Knee Kelly M, Roden Catherine K, Flory Mark R, Mukerji Ishita
Molecular Biology and Biochemistry Department, Molecular Biophysics Program, Wesleyan University, Lawn Avenue, Middletown, CT 06459-0175, USA.
Biophys Chem. 2007 May;127(3):181-93. doi: 10.1016/j.bpc.2007.02.002. Epub 2007 Feb 16.
Recent studies have suggested that nitric oxide (NO) binding to hemoglobin (Hb) may lead to the inhibition of sickle cell fiber formation and the dissolution of sickle cell fibers. NO can react with Hb in at least 3 ways: 1) formation of Hb(II)NO, 2) formation of methemoglobin, and 3) formation of S-nitrosohemoglobin, through nitrosylation of the beta93 Cys residue. In this study, the role of beta93 Cys in the mechanism of sickle cell fiber inhibition is investigated through chemical modification with N-ethylmaleimide. UV resonance Raman, FT-IR and electrospray ionization mass spectroscopic methods in conjunction with equilibrium solubility and kinetic studies are used to characterize the effect of beta93 Cys modification on Hb S fiber formation. Both FT-IR spectroscopy and electrospray mass spectrometry results demonstrate that modification can occur at both the beta93 and alpha104 Cys residues under relatively mild reaction conditions. Equilibrium solubility measurements reveal that singly-modified Hb at the beta93 position leads to increased amounts of fiber formation relative to unmodified or doubly-modified Hb S. Kinetic studies confirm that modification of only the beta93 residue leads to a faster onset of polymerization. UV resonance Raman results indicate that modification of the alpha104 residue in addition to the beta93 residue significantly perturbs the alpha(1)beta(2) interface, while modification of only beta93 does not. These results in conjunction with the equilibrium solubility and kinetic measurements are suggestive that modification of the alpha104 Cys residue and not the beta93 Cys residue leads to T-state destabilization and inhibition of fiber formation. These findings have implications for understanding the mechanism of NO binding to Hb and NO inhibition of Hb S fiber formation.
最近的研究表明,一氧化氮(NO)与血红蛋白(Hb)结合可能会抑制镰状细胞纤维的形成并导致镰状细胞纤维溶解。NO可至少通过3种方式与Hb发生反应:1)形成Hb(II)NO,2)形成高铁血红蛋白,3)通过β93半胱氨酸残基的亚硝基化形成S-亚硝基血红蛋白。在本研究中,通过用N-乙基马来酰亚胺进行化学修饰来研究β93半胱氨酸在镰状细胞纤维抑制机制中的作用。结合平衡溶解度和动力学研究,使用紫外共振拉曼光谱、傅里叶变换红外光谱和电喷雾电离质谱方法来表征β93半胱氨酸修饰对Hb S纤维形成的影响。傅里叶变换红外光谱和电喷雾质谱结果均表明,在相对温和的反应条件下,β93和α104半胱氨酸残基均可发生修饰。平衡溶解度测量结果显示,相对于未修饰或双重修饰的Hb S,β93位单修饰的Hb会导致纤维形成量增加。动力学研究证实,仅β93残基的修饰会导致聚合反应更快开始。紫外共振拉曼光谱结果表明,除β93残基外,α104残基的修饰会显著扰乱α(1)β(2)界面,而仅修饰β93则不会。这些结果与平衡溶解度和动力学测量结果共同表明,α104半胱氨酸残基而非β93半胱氨酸残基的修饰会导致T态不稳定并抑制纤维形成。这些发现对于理解NO与Hb结合的机制以及NO对Hb S纤维形成的抑制作用具有重要意义。