Suppr超能文献

针对血红蛋白 S 中的βCys93 靶点,使用具有双重变构和抗氧化作用的抗镰状化药物。

Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects.

机构信息

Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.

出版信息

Metallomics. 2017 Sep 20;9(9):1260-1270. doi: 10.1039/c7mt00104e.

Abstract

Sickle cell disease (SCD) is an inherited blood disorder caused by a β globin gene mutation of hemoglobin (HbS). The polymerization of deoxyHbS and its subsequent aggregation (into long fibers) is the primary molecular event which leads to red blood cell (RBC) sickling and ultimately hemolytic anemia. We have recently suggested that HbS oxidative toxicity may also contribute to SCD pathophysiology due to its defective pseudoperoxidase activity. As a consequence, a persistently higher oxidized ferryl heme is formed which irreversibly oxidizes "hotspot" residues (particularly βCys93) causing protein unfolding and subsequent heme loss. In this report we confirmed first, the allosteric effect of a newly developed reagent (di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide) (TD-1) on oxygen affinity within SS RBCs. There was a considerable left shift in oxygen equilibrium curves (OECs) representing treated SS cells. Under hypoxic conditions, TD-1 treatment of HbS resulted in an approximately 200 s increase in the delay time of HbS polymerization over the untreated HbS control. The effect of TD-1 binding to HbS was also tested on oxidative reactions by incrementally treating HbS with increasing hydrogen peroxide (HO) concentrations. Under these experimental conditions, ferryl levels were consistently reduced by approximately 35% in the presence of TD-1. Mass spectrometric analysis confirmed that upon binding to βCys93, TD-1 effectively blocked irreversible oxidation of this residue. In conclusion, TD-1 appears to shield βCys93 (the end point of radical formation in HbS) and when coupled with its allosteric effect on oxygen affinity may provide new therapeutic modalities for the treatment of SCD.

摘要

镰状细胞病(SCD)是一种遗传性血液疾病,由血红蛋白(HbS)的β球蛋白基因突变引起。脱氧 HbS 的聚合及其随后的聚集(形成长纤维)是导致红细胞(RBC)镰变并最终导致溶血性贫血的主要分子事件。我们最近提出,由于其缺陷的假过氧化物酶活性,HS 氧化毒性也可能导致 SCD 病理生理学。因此,形成了持续更高的氧化高铁血红素,其不可逆地氧化“热点”残基(特别是βCys93)导致蛋白质展开和随后的血红素损失。在本报告中,我们首先证实了一种新开发的试剂(二(5-(2,3-二氢-1,4-苯并二恶烷-2-基)-4H-1,2,4-三唑-3-基)二硫代)(TD-1)对 SS RBC 内氧亲和力的变构效应。氧平衡曲线(OEC)的左移相当大,代表治疗后的 SS 细胞。在缺氧条件下,HS 处理后,HS 聚合的延迟时间相对于未处理的 HbS 对照增加了约 200 秒。还通过逐步用增加的过氧化氢(HO)浓度处理 HbS 来测试 TD-1 与 HbS 结合对氧化反应的影响。在这些实验条件下,在存在 TD-1 的情况下,高铁血红素水平始终降低约 35%。质谱分析证实,TD-1 结合到βCys93 后,有效地阻止了该残基的不可逆氧化。总之,TD-1 似乎可以屏蔽βCys93(HS 中自由基形成的终点),并且当与氧亲和力的变构效应结合使用时,可能为 SCD 的治疗提供新的治疗方式。

相似文献

引用本文的文献

1
4
Caffeic acid: an antioxidant with novel antisickling properties.咖啡酸:一种具有新颖抗镰变性质的抗氧化剂。
FEBS Open Bio. 2021 Dec;11(12):3293-3303. doi: 10.1002/2211-5463.13295. Epub 2021 Sep 22.

本文引用的文献

3
Sickle cell disease: Its molecular mechanism and the one drug that treats it.镰状细胞病:其分子机制和唯一的治疗药物。
Int J Biol Macromol. 2016 Dec;93(Pt A):1168-1173. doi: 10.1016/j.ijbiomac.2016.09.073. Epub 2016 Sep 22.
5
Universality of supersaturation in protein-fiber formation.蛋白质-纤维形成过程中过饱和度的普遍性。
Nat Struct Mol Biol. 2016 May;23(5):459-61. doi: 10.1038/nsmb.3197. Epub 2016 Mar 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验