Imker Heidi J, Fedorov Alexander A, Fedorov Elena V, Almo Steven C, Gerlt John A
Departments of Biochemistry and Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA.
Biochemistry. 2007 Apr 3;46(13):4077-89. doi: 10.1021/bi7000483. Epub 2007 Mar 13.
D-Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most abundant enzyme, is the paradigm member of the recently recognized mechanistically diverse RuBisCO superfamily. The RuBisCO reaction is initiated by abstraction of the proton from C3 of the d-ribulose 1,5-bisphosphate substrate by a carbamate oxygen of carboxylated Lys 201 (spinach enzyme). Heterofunctional homologues of RuBisCO found in species of Bacilli catalyze the tautomerization ("enolization") of 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) in the methionine salvage pathway in which 5-methylthio-d-ribose (MTR) derived from 5'-methylthioadenosine is converted to methionine [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO, Science 302, 286-290]. The reaction catalyzed by this "enolase" is accomplished by abstraction of a proton from C1 of the DK-MTP 1-P substrate to form the tautomerized product, a conjugated enol. Because the RuBisCO- and "enolase"-catalyzed reactions differ in the regiochemistry of proton abstraction but are expected to share stabilization of an enolate anion intermediate by coordination to an active site Mg2+, we sought to establish structure-function relationships for the "enolase" reaction so that the structural basis for the functional diversity could be established. We determined the stereochemical course of the reaction catalyzed by the "enolases" from Bacillus subtilis and Geobacillus kaustophilus. Using stereospecifically deuterated samples of an alternate substrate derived from d-ribose (5-OH group instead of the 5-methylthio group in MTR) as well as of the natural DK-MTP 1-P substrate, we determined that the "enolase"-catalyzed reaction involves abstraction of the 1-proS proton. We also determined the structure of the activated "enolase" from G. kaustophilus (carboxylated on Lys 173) liganded with Mg2+ and 2,3-diketohexane 1-phosphate, a stable alternate substrate. The stereospecificity of proton abstraction restricts the location of the general base to the N-terminal alpha+beta domain instead of the C-terminal (beta/alpha)8-barrel domain that contains the carboxylated Lys 173. Lys 98 in the N-terminal domain, conserved in all "enolases", is positioned to abstract the 1-proS proton. Consistent with this proposed function, the K98A mutant of the G. kaustophilus "enolase" is unable to catalyze the "enolase" reaction. Thus, we conclude that this functionally divergent member of the RuBisCO superfamily uses the same structural strategy as RuBisCO for stabilizing the enolate anion intermediate, i.e., coordination to an essential Mg2+, but the proton abstraction is catalyzed by a different general base.
1,5 - 二磷酸核酮糖羧化酶/加氧酶(RuBisCO)是含量最丰富的酶,是最近发现的机制多样的RuBisCO超家族的典型成员。RuBisCO反应是由羧化赖氨酸201(菠菜酶)的氨基甲酸酯氧从1,5 - 二磷酸 - D - 核酮糖底物的C3位夺取质子引发的。在芽孢杆菌属物种中发现的RuBisCO异功能同源物催化甲硫氨酸挽救途径中2,3 - 二酮 - 5 - 甲基硫代戊烷1 - 磷酸(DK - MTP 1 - P)的互变异构化(“烯醇化”),在该途径中,源自5'-甲基硫代腺苷的5 - 甲基硫代 - D - 核糖(MTR)转化为甲硫氨酸[芦田浩、斋藤洋、小岛聪、小林健、小笠原直、横田晃(2003年)芽孢杆菌属的RuBisCO样蛋白与光合RuBisCO之间的功能联系,《科学》302卷,286 - 290页]。这种“烯醇酶”催化的反应是通过从DK - MTP 1 - P底物的C1位夺取质子以形成互变异构化产物(一种共轭烯醇)来完成的。由于RuBisCO和“烯醇酶”催化的反应在质子夺取的区域化学上有所不同,但预计通过与活性位点Mg2 +配位来共享烯醇负离子中间体的稳定性,我们试图建立“烯醇酶”反应的结构 - 功能关系,以便能够确定功能多样性的结构基础。我们确定了枯草芽孢杆菌和嗜热栖热放线菌“烯醇酶”催化反应的立体化学过程。使用源自D - 核糖(5 - 羟基取代MTR中的5 - 甲基硫基)的替代底物以及天然DK - MTP 1 - P底物的立体特异性氘代样品,我们确定“烯醇酶”催化的反应涉及1 - proS质子的夺取。我们还确定了嗜热栖热放线菌(赖氨酸173羧化)与Mg2 +和2,3 - 二酮己烷1 - 磷酸(一种稳定的替代底物)结合的活化“烯醇酶”的结构。质子夺取的立体特异性将一般碱的位置限制在N端α + β结构域,而不是包含羧化赖氨酸173的C端(β/α)8 - 桶状结构域。N端结构域中在所有“烯醇酶”中保守的赖氨酸98被定位为夺取1 - proS质子。与这种推测的功能一致,嗜热栖热放线菌“烯醇酶”的K98A突变体无法催化“烯醇酶”反应。因此,我们得出结论,RuBisCO超家族的这个功能不同的成员使用与RuBisCO相同的结构策略来稳定烯醇负离子中间体,即与必需的Mg2 +配位,但质子夺取是由不同的一般碱催化的。