Suppr超能文献

三维地标定位的基本限制。

Fundamental limits in 3D landmark localization.

作者信息

Rohr Karl

机构信息

University of Heidelberg, IPMB, DKFZ Heidelberg, Dept. Intelligent Bioinformatics Systems, Biomedical Computer Vision Group, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.

出版信息

Inf Process Med Imaging. 2005;19:286-98. doi: 10.1007/11505730_24.

Abstract

This work analyses the accuracy of estimating the location of 3D landmarks and characteristic image structures. Based on nonlinear estimation theory we study the minimal stochastic errors of the position estimate caused by noisy data. Given analytic models of the image intensities we derive closed-form expressions for the Cramér-Rao bound for different 3D structures such as 3D edges, 3D ridges, 3D lines, and 3D blobs. It turns out, that the precision of localization depends on the noise level, the size of the region-of-interest, the width of the intensity transitions, as well as on other parameters describing the considered image structure. The derived lower bounds can serve as benchmarks and the performance of existing algorithms can be compared with them. To give an impression of the achievable accuracy numeric examples are presented. Moreover, by experimental investigations we demonstrate that the derived lower bounds can be achieved by fitting parametric intensity models directly to the image data.

摘要

这项工作分析了估计三维地标和特征图像结构位置的准确性。基于非线性估计理论,我们研究了由噪声数据引起的位置估计的最小随机误差。给定图像强度的解析模型,我们推导了不同三维结构(如三维边缘、三维脊线、三维直线和三维斑点)的克拉美罗界的闭式表达式。结果表明,定位精度取决于噪声水平、感兴趣区域的大小、强度过渡的宽度以及描述所考虑图像结构的其他参数。推导得到的下界可以作为基准,并且可以将现有算法的性能与之进行比较。为了给出可达到的精度的印象,给出了数值示例。此外,通过实验研究,我们证明了通过将参数强度模型直接拟合到图像数据可以达到推导得到的下界。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验