Suppr超能文献

一种基于模型的半全局分割方法,用于在神经图像中自动进行三维点地标定位。

A model-based, semi-global segmentation approach for automatic 3-D point landmark localization in neuroimages.

作者信息

Liu Jimin, Gao Wenpeng, Huang Su, Nowinski Wieslaw L

机构信息

Biomedical Imaging Laboratory, Agency for Science, Technology and Research, 138671 Singapore.

出版信息

IEEE Trans Med Imaging. 2008 Aug;27(8):1034-44. doi: 10.1109/TMI.2008.915684.

Abstract

The existing differential approaches for localization of 3-D anatomic point landmarks in 3-D images are sensitive to noise and usually extract numerous spurious landmarks. The parametric model-based approaches are not practically usable for localization of landmarks that can not be modeled by simple parametric forms. Some dedicated methods using anatomic knowledge to identify particular landmarks are not general enough to cope with other landmarks. In this paper, we propose a model-based, semi-global segmentation approach to automatically localize 3-D point landmarks in neuroimages. To localize a landmark, the semi-global segmentation (meaning the segmentation of a part of the studied structure in a certain neighborhood of the landmark) is first achieved by an active surface model, and then the landmark is localized by analyzing the segmented part only. The joint use of global model-to-image registration, semi-global structure registration, active surface-based segmentation, and point-anchored surface registration makes our method robust to noise and shape variation. To evaluate the method, we apply it to the localization of ventricular landmarks including curvature extrema, centerline intersections, and terminal points. Experiments with 48 clinical and 18 simulated magnetic resonance (MR) volumetric images show that the proposed approach is able to localize these landmarks with an average accuracy of 1 mm (i.e., at the level of image resolution). We also illustrate the use of the proposed approach to cortical landmark identification and discuss its potential applications ranging from computer-aided radiology and surgery to atlas registration with scans.

摘要

现有的用于在三维图像中定位三维解剖学点地标物的差分方法对噪声敏感,并且通常会提取大量虚假地标物。基于参数模型的方法对于无法用简单参数形式建模的地标物定位实际上不可用。一些利用解剖学知识识别特定地标物的专用方法不够通用,无法处理其他地标物。在本文中,我们提出了一种基于模型的半全局分割方法,用于在神经图像中自动定位三维点地标物。为了定位一个地标物,首先通过主动表面模型实现半全局分割(即在地标物的某个邻域内对所研究结构的一部分进行分割),然后仅通过分析分割部分来定位地标物。全局模型到图像配准、半全局结构配准、基于主动表面的分割和点锚定表面配准的联合使用使我们的方法对噪声和形状变化具有鲁棒性。为了评估该方法,我们将其应用于心室地标物的定位,包括曲率极值、中心线交点和端点。对48幅临床和18幅模拟磁共振(MR)体积图像的实验表明,所提出的方法能够以平均1毫米的精度(即图像分辨率水平)定位这些地标物。我们还说明了所提出的方法在皮质地标物识别中的应用,并讨论了其从计算机辅助放射学和手术到与扫描进行图谱配准的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验