Suppr超能文献

基于光线追踪的肺部高分辨率CT图像配准

Ray-tracing based registration for HRCT images of the lungs.

作者信息

Busayara Sata, Zrimec Tatjana

机构信息

School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 2):670-7.

Abstract

Image registration is a fundamental problem in medical imaging. It is especially challenging in lung images compared, for example, with the brain. The challenges include large anatomical variations of human lung and a lack of fixed landmarks inside the lung. This paper presents a new method for lung HRCT image registration. It employs a landmark-based global transformation and a novel ray-tracing-based lung surface registration. The proposed surface registration method has two desirable properties: 1) it is fully reversible, and 2) it ensures that the registered lung will be inside the target lung. We evaluated the registration performance by applying it to lung regions mapping. Tested on 46 scans, the registered regions were 89% accurate compared with the ground-truth.

摘要

图像配准是医学成像中的一个基本问题。例如,与脑部图像相比,肺部图像的配准尤其具有挑战性。这些挑战包括人类肺部较大的解剖变异以及肺部内部缺乏固定的标志物。本文提出了一种用于肺部高分辨率计算机断层扫描(HRCT)图像配准的新方法。它采用基于标志物的全局变换和一种新颖的基于光线追踪的肺表面配准方法。所提出的表面配准方法具有两个理想特性:1)它是完全可逆的,2)它确保配准后的肺将位于目标肺内部。我们通过将其应用于肺部区域映射来评估配准性能。在46次扫描上进行测试,与真实情况相比,配准区域的准确率为89%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验