Urschler Martin, Zach Christopher, Ditt Hendrik, Bischof Horst
Institute for Computer Graphics & Vision, Graz University of Technology, Austria.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):710-7. doi: 10.1007/11866763_87.
Nonlinear image registration is a prerequisite for a variety of medical image analysis tasks. A frequently used registration method is based on manually or automatically derived point landmarks leading to a sparse displacement field which is densified in a thin-plate spline (TPS) framework. A large problem of TPS interpolation/approximation is the requirement for evenly distributed landmark correspondences over the data set which can rarely be guaranteed by landmark matching algorithms. We propose to overcome this problem by combining the sparse correspondences with intensity-based registration in a generic nonlinear registration scheme based on the calculus of variations. Missing landmark information is compensated by a stronger intensity term, thus combining the strengths of both approaches. An explicit formulation of the generic framework is derived that constrains an intra-modality intensity data term with a regularization term from the corresponding landmarks and an anisotropic image-driven displacement regularization term. An evaluation of this algorithm is performed comparing it to an intensity- and a landmark-based method. Results on four synthetically deformed and four clinical thorax CT data sets at different breathing states are shown.
非线性图像配准是各种医学图像分析任务的前提条件。一种常用的配准方法是基于手动或自动导出的点地标,从而得到一个稀疏位移场,该位移场在薄板样条(TPS)框架中进行加密。TPS插值/逼近的一个大问题是要求在数据集上均匀分布地标对应关系,而地标匹配算法很少能保证这一点。我们建议通过在基于变分法的通用非线性配准方案中,将稀疏对应关系与基于强度的配准相结合来克服这个问题。缺失的地标信息由更强的强度项进行补偿,从而结合了两种方法的优势。推导了通用框架的显式公式,该公式用来自相应地标的正则化项和各向异性图像驱动的位移正则化项来约束模态内强度数据项。对该算法进行了评估,并将其与基于强度和基于地标的方法进行比较。展示了在不同呼吸状态下四个合成变形和四个临床胸部CT数据集上的结果。