Suppr超能文献

乳腺组织分类技术的比较。

A comparison of breast tissue classification techniques.

作者信息

Oliver Arnau, Freixenet Jordi, Martí Robert, Zwiggelaar Reyer

机构信息

Institute of Informatics and Applications, University of Girona Campus Montilivi, Ed. P-IV, 17071, Girona, Spain.

出版信息

Med Image Comput Comput Assist Interv. 2006;9(Pt 2):872-9. doi: 10.1007/11866763_107.

Abstract

It is widely accepted in the medical community that breast tissue density is an important risk factor for the development of breast cancer. Thus, the development of reliable automatic methods for classification of breast tissue is justified and necessary. Although different approaches in this area have been proposed in recent years, only a few are based on the BIRADS classification standard. In this paper we review different strategies for extracting features in tissue classification systems, and demonstrate, not only the feasibility of estimating breast density using automatic computer vision techniques, but also the benefits of segmentation of the breast based on internal tissue information. The evaluation of the methods is based on the full MIAS database classified according to BIRADS categories, and agreement between automatic and manual classification of 82% was obtained.

摘要

医学界普遍认为,乳腺组织密度是乳腺癌发生的一个重要风险因素。因此,开发可靠的乳腺组织自动分类方法是合理且必要的。尽管近年来该领域已提出了不同的方法,但只有少数是基于BIRADS分类标准的。在本文中,我们回顾了组织分类系统中提取特征的不同策略,并证明了不仅使用自动计算机视觉技术估计乳腺密度是可行的,而且基于内部组织信息对乳房进行分割也是有益的。这些方法的评估基于根据BIRADS类别分类的完整MIAS数据库,自动分类与手动分类之间的一致性达到了82%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验