Suppr超能文献

利用应用于大鼠海马体CA1区位置场数据的点过程滤波器,通过T型迷宫解码运动轨迹。

Decoding movement trajectories through a T-maze using point process filters applied to place field data from rat hippocampal region CA1.

作者信息

Huang Yifei, Brandon Mark P, Griffin Amy L, Hasselmo Michael E, Eden Uri T

机构信息

Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA.

出版信息

Neural Comput. 2009 Dec;21(12):3305-34. doi: 10.1162/neco.2009.10-08-893.

Abstract

Firing activity from neural ensembles in rat hippocampus has been previously used to determine an animal's position in an open environment and separately to predict future behavioral decisions. However, a unified statistical procedure to combine information about position and behavior in environments with complex topological features from ensemble hippocampal activity has yet to be described. Here we present a two-stage computational framework that uses point process filters to simultaneously estimate the animal's location and predict future behavior from ensemble neural spiking activity. First, in the encoding stage, we linearized a two-dimensional T-maze, and used spline-based generalized linear models to characterize the place-field structure of different neurons. All of these neurons displayed highly specific position-dependent firing, which frequently had several peaks at multiple locations along the maze. When the rat was at the stem of the T-maze, the firing activity of several of these neurons also varied significantly as a function of the direction it would turn at the decision point, as detected by ANOVA. Second, in the decoding stage, we developed a state-space model for the animal's movement along a T-maze and used point process filters to accurately reconstruct both the location of the animal and the probability of the next decision. The filter yielded exact full posterior densities that were highly nongaussian and often multimodal. Our computational framework provides a reliable approach for characterizing and extracting information from ensembles of neurons with spatially specific context or task-dependent firing activity.

摘要

大鼠海马体中神经集群的放电活动此前已被用于确定动物在开放环境中的位置,并分别预测其未来的行为决策。然而,尚未有统一的统计程序来结合来自海马体集群活动的、关于具有复杂拓扑特征环境中位置和行为的信息。在此,我们提出了一个两阶段计算框架,该框架使用点过程滤波器同时估计动物的位置,并根据集群神经脉冲活动预测未来行为。首先,在编码阶段,我们将二维T型迷宫线性化,并使用基于样条的广义线性模型来表征不同神经元的位置场结构。所有这些神经元都表现出高度特定的位置依赖性放电,在迷宫沿线的多个位置经常有多个峰值。当大鼠位于T型迷宫的主干时,正如通过方差分析所检测到的,其中几个神经元的放电活动也会随着它在决策点转向的方向而显著变化。其次,在解码阶段,我们为动物沿T型迷宫的运动开发了一个状态空间模型,并使用点过程滤波器准确重建动物的位置以及下一个决策的概率。该滤波器产生了精确的完整后验密度,这些密度高度非高斯且通常是多峰的。我们的计算框架为从具有空间特定背景或任务依赖性放电活动的神经元集群中表征和提取信息提供了一种可靠的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验