Suppr超能文献

心电图中心室活动的取消:新方法与现有方法的评估

Cancellation of ventricular activity in the ECG: evaluation of novel and existing methods.

作者信息

Lemay Mathieu, Vesin Jean-Marc, van Oosterom Adriaan, Jacquemet Vincent, Kappenberger Lukas

机构信息

Ecole Polytechnique Fédérale de Lausanne, Signal Processing Institute, Lausanne CH-1015, Switzerland.

出版信息

IEEE Trans Biomed Eng. 2007 Mar;54(3):542-6. doi: 10.1109/TBME.2006.888835.

Abstract

Due to the much higher amplitude of the electrical activity of the ventricles in the surface electrocardiogram (ECG), its cancellation is crucial for the analysis and characterization of atrial fibrillation. In this paper, two different methods are proposed for this cancellation. The first one is an average beat subtraction type of method. Two sets of templates are created: one set for the ventricular depolarization waves and one for the ventricular repolarization waves. Next, spatial optimization (rotation and amplitude scaling) is applied to the QRS templates. The second method is a single beat method that cancels the ventricular involvement in each cardiac cycle in an independent manner. The estimation and cancellation of the ventricular repolarization is based on the concept of dominant T and U waves. Subsequently, the atrial activities during the ventricular depolarization intervals are estimated by a weighted sum of sinusoids observed in the cleaned up segments. ECG signals generated by a biophysical model as well as clinical ECG signals are used to evaluate the performance of the proposed methods in comparison to two standard ABS-based methods.

摘要

由于在体表心电图(ECG)中,心室电活动的幅度要高得多,因此消除心室电活动对于心房颤动的分析和特征描述至关重要。本文针对这种消除提出了两种不同的方法。第一种是平均搏动减法类型的方法。创建两组模板:一组用于心室去极化波,一组用于心室复极化波。接下来,对QRS模板进行空间优化(旋转和幅度缩放)。第二种方法是单搏动方法,它以独立的方式消除每个心动周期中的心室影响。心室复极化的估计和消除基于主导T波和U波的概念。随后,通过在清理后的段中观察到的正弦波的加权和来估计心室去极化间期的心房活动。与两种基于标准ABS的方法相比,使用生物物理模型生成的ECG信号以及临床ECG信号来评估所提出方法的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验