Saint-Jalmes A, Marze S, Ritacco H, Langevin D, Bail S, Dubail J, Guingot L, Roux G, Sung P, Tosini L
Groupe Matière Condensée et Matériaux, Université Rennes 1, Rennes, France.
Phys Rev Lett. 2007 Feb 2;98(5):058303. doi: 10.1103/PhysRevLett.98.058303. Epub 2007 Feb 1.
We report the results of fluid transport experiments in aqueous foams under microgravity. Using optical and electrical methods, the capillary motion of the foam fluid and the local liquid fractions are monitored. We show that foams can be continuously wetted up to high liquid fractions ( approximately 0.3), without any bubble motion instabilities. Data are compared to drainage models: For liquid fractions above 0.2, discrepancies are found and identified. These new results on foam hydrodynamics and structure can be useful for other poroelastic materials, such as plants and biological tissues.
我们报告了在微重力条件下水性泡沫中流体传输实验的结果。使用光学和电学方法,监测了泡沫流体的毛细管运动和局部液体分数。我们表明,泡沫可以在高达高液体分数(约0.3)的情况下持续被润湿,而不会出现任何气泡运动不稳定性。将数据与排水模型进行了比较:对于液体分数高于0.2的情况,发现并识别出了差异。这些关于泡沫流体动力学和结构的新结果可能对其他多孔弹性材料(如植物和生物组织)有用。