Hansson T H, Chang C-C, Jain J K, Viefers S
Department of Physics, Stockholm University AlbaNova University Center, SE-106 91 Stockholm, Sweden.
Phys Rev Lett. 2007 Feb 16;98(7):076801. doi: 10.1103/PhysRevLett.98.076801. Epub 2007 Feb 12.
We show that the quantum Hall wave functions for the ground states in the Jain series nu=n/(2np+1) can be exactly expressed in terms of correlation functions of local vertex operators Vn corresponding to composite fermions in the nth composite-fermion (CF) Landau level. This allows for the powerful mathematics of conformal field theory to be applied to the successful CF phenomenology. Quasiparticle and quasihole states are expressed as correlators of anyonic operators with fractional (local) charge, allowing a simple algebraic understanding of their topological properties that are not manifest in the CF wave functions. Moreover, our construction shows how the states in the nu=n/(2np+1) Jain sequence may be interpreted as condensates of quasiparticles.
我们表明,Jain 序列 ν = n / (2np + 1) 基态的量子霍尔波函数可以用与第 n 个复合费米子(CF)朗道能级中的复合费米子相对应的局部顶点算符 Vn 的关联函数精确表示。这使得共形场论的强大数学方法能够应用于成功的 CF 现象学。准粒子和准空穴态被表示为具有分数(局部)电荷的任意子算符的关联函数,从而可以对其拓扑性质进行简单的代数理解,而这些性质在 CF 波函数中并不明显。此外,我们的构造展示了 ν = n / (2np + 1) Jain 序列中的态如何可以被解释为准粒子的凝聚态。