Suppr超能文献

有丝分裂抑制激酶Wee1在M期失活的机制。

Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase.

作者信息

Okamoto Kengo, Sagata Noriyuki

机构信息

Department of Biology, Graduate School of Sciences, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan.

出版信息

Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3753-8. doi: 10.1073/pnas.0607357104. Epub 2007 Feb 23.

Abstract

Wee1, the inhibitory kinase of cyclin B/Cdc2, undergoes a phosphorylation-dependent catalytic inactivation at M phase of the mitotic cell cycle, but the precise mechanism for this inactivation is not known. Using Xenopus egg and extract systems, we show here that the kinase activity of Xenopus somatic Wee1 (XeWee1B) is regulated by its N-terminal, small, well conserved region, termed here the Wee-box. The Wee-box is essential for the normal kinase activity of XeWee1B during interphase, acting positively on the C-terminal catalytic domain, which alone cannot efficiently phosphorylate Cdc2. Significantly, a Thr-186-Pro (TP) motif within the Wee-box is phosphorylated by Cdc2 at M phase and specifically binds the cis/trans prolyl isomerase Pin1. This Pin1 binding is required for the inactivation of XeWee1B at M phase, presumably causing isomerization of the phospho-TP motif and thereby impairing the function of the Wee-box. These results provide important insights into the mechanism of Wee1 inactivation at M phase.

摘要

Wee1是细胞周期蛋白B/Cdc2的抑制性激酶,在有丝分裂细胞周期的M期经历磷酸化依赖性催化失活,但其失活的确切机制尚不清楚。利用非洲爪蟾卵和提取物系统,我们在此表明非洲爪蟾体细胞Wee1(XeWee1B)的激酶活性受其N端小的保守区域(在此称为Wee框)调控。Wee框对于间期XeWee1B的正常激酶活性至关重要,对单独无法有效磷酸化Cdc2的C端催化结构域起正向作用。值得注意的是,Wee框内的苏氨酸-186-脯氨酸(TP)基序在M期被Cdc2磷酸化,并特异性结合顺/反脯氨酰异构酶Pin1。这种Pin1结合是M期XeWee1B失活所必需的,推测导致磷酸化TP基序的异构化,从而损害Wee框的功能。这些结果为M期Wee1失活机制提供了重要见解。

相似文献

1
Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase.
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3753-8. doi: 10.1073/pnas.0607357104. Epub 2007 Feb 23.
2
The xenopus Suc1/Cks protein promotes the phosphorylation of G(2)/M regulators.
J Biol Chem. 1999 Dec 24;274(52):36839-42. doi: 10.1074/jbc.274.52.36839.
3
The mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1.
EMBO J. 1998 Aug 10;17(5):1315-27. doi: 10.1093/emboj/17.5.1315.
6
Multisite M-phase phosphorylation of Xenopus Wee1A.
Mol Cell Biol. 2005 Dec;25(23):10580-90. doi: 10.1128/MCB.25.23.10580-10590.2005.
7
Multiple Cdk1 inhibitory kinases regulate the cell cycle during development.
Dev Biol. 2002 Sep 1;249(1):156-73. doi: 10.1006/dbio.2002.0743.
8
Cell cycle regulation of a Xenopus Wee1-like kinase.
Mol Biol Cell. 1995 Jan;6(1):119-34. doi: 10.1091/mbc.6.1.119.
9
Requirement of the prolyl isomerase Pin1 for the replication checkpoint.
Science. 2000 Mar 3;287(5458):1644-7. doi: 10.1126/science.287.5458.1644.
10
Measurement of Wee kinase activity.
Methods Mol Biol. 2005;296:299-328. doi: 10.1385/1-59259-857-9:299.

引用本文的文献

3
Synthetic and Medicinal Chemistry Approaches Toward WEE1 Kinase Inhibitors and Its Degraders.
ACS Omega. 2023 Jun 2;8(23):20196-20233. doi: 10.1021/acsomega.3c01558. eCollection 2023 Jun 13.
4
Preclinical assessment of synergistic efficacy of MELK and CDK inhibitors in adrenocortical cancer.
J Exp Clin Cancer Res. 2022 Sep 23;41(1):282. doi: 10.1186/s13046-022-02464-5.
6
Targeting Pin1 for Modulation of Cell Motility and Cancer Therapy.
Biomedicines. 2021 Mar 31;9(4):359. doi: 10.3390/biomedicines9040359.
8
Irrigation-Induced Changes in Chemical Composition and Quality of Seeds of Yellow Lupine ( L.).
Int J Mol Sci. 2019 Nov 6;20(22):5521. doi: 10.3390/ijms20225521.
9
Oncogenic Hijacking of the PIN1 Signaling Network.
Front Oncol. 2019 Feb 25;9:94. doi: 10.3389/fonc.2019.00094. eCollection 2019.
10
PIN1 in Cell Cycle Control and Cancer.
Front Pharmacol. 2018 Nov 26;9:1367. doi: 10.3389/fphar.2018.01367. eCollection 2018.

本文引用的文献

1
New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate.
Cell Cycle. 2006 Feb;5(3):227-31. doi: 10.4161/cc.5.3.2395. Epub 2006 Feb 8.
2
Multisite M-phase phosphorylation of Xenopus Wee1A.
Mol Cell Biol. 2005 Dec;25(23):10580-90. doi: 10.1128/MCB.25.23.10580-10590.2005.
4
Cdk1-dependent regulation of the mitotic inhibitor Wee1.
Cell. 2005 Aug 12;122(3):407-20. doi: 10.1016/j.cell.2005.05.029.
5
Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways.
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11663-8. doi: 10.1073/pnas.0500410102. Epub 2005 Aug 5.
7
Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast.
EMBO J. 2005 Jun 15;24(12):2194-204. doi: 10.1038/sj.emboj.7600683. Epub 2005 May 26.
8
Phosphorylation-specific prolyl isomerization: is there an underlying theme?
Nat Cell Biol. 2005 May;7(5):435-41. doi: 10.1038/ncb0505-435.
10
The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs.
EMBO J. 2005 Mar 9;24(5):1057-67. doi: 10.1038/sj.emboj.7600567. Epub 2005 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验