Suppr超能文献

番茄果实的叶酸生物强化

Folate biofortification of tomato fruit.

作者信息

Díaz de la Garza Rocío I, Gregory Jesse F, Hanson Andrew D

机构信息

Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4218-22. doi: 10.1073/pnas.0700409104. Epub 2007 Mar 5.

Abstract

Folate deficiency leads to neural tube defects and other human diseases, and is a global health problem. Because plants are major folate sources for humans, we have sought to enhance plant folate levels (biofortification). Folates are synthesized from pteridine, p-aminobenzoate (PABA), and glutamate precursors. Previously, we increased pteridine production in tomato fruit up to 140-fold by overexpressing GTP cyclohydrolase I, the first enzyme of pteridine synthesis. This strategy increased folate levels 2-fold, but engineered fruit were PABA-depleted. We report here the engineering of fruit-specific overexpression of aminodeoxychorismate synthase, which catalyzes the first step of PABA synthesis. The resulting fruit contained an average of 19-fold more PABA than controls. When transgenic PABA- and pteridine-overproduction traits were combined by crossing, vine-ripened fruit accumulated up to 25-fold more folate than controls. Folate accumulation was almost as high (up to 15-fold) in fruit harvested green and ripened by ethylene-gassing, as occurs in commerce. The accumulated folates showed normal proportions of one-carbon forms, with 5-methyltetrahydrofolate the most abundant, but were less extensively polyglutamylated than controls. Folate concentrations in developing fruit did not change in controls, but increased continuously throughout ripening in transgenic fruit. Pteridine and PABA levels in transgenic fruit were >20-fold higher than in controls, but the pathway intermediates dihydropteroate and dihydrofolate did not accumulate, pointing to a flux constraint at the dihydropteroate synthesis step. The folate levels we achieved provide the complete adult daily requirement in less than one standard serving.

摘要

叶酸缺乏会导致神经管缺陷和其他人类疾病,是一个全球性的健康问题。由于植物是人类主要的叶酸来源,我们一直致力于提高植物中的叶酸水平(生物强化)。叶酸由蝶啶、对氨基苯甲酸(PABA)和谷氨酸前体合成。此前,我们通过过表达蝶啶合成的第一个酶GTP环水解酶I,使番茄果实中的蝶啶产量提高了140倍。这一策略使叶酸水平提高了2倍,但转基因果实中的PABA含量减少。我们在此报告了果实特异性过表达氨基脱氧分支酸合酶的工程改造,该酶催化PABA合成的第一步。所得果实中的PABA平均含量比对照高19倍。当通过杂交将转基因PABA和蝶啶过量生产性状结合时,藤上成熟的果实积累的叶酸比对照多25倍。如商业中常见的那样,通过乙烯催熟收获的绿色果实中叶酸积累量几乎同样高(高达15倍)。积累的叶酸显示出正常的一碳形式比例,其中5-甲基四氢叶酸含量最高,但与对照相比,多聚谷氨酸化程度较低。对照果实发育过程中的叶酸浓度没有变化,但转基因果实成熟过程中叶酸浓度持续增加。转基因果实中的蝶啶和PABA水平比对照高20倍以上,但途径中间体二氢蝶酸和二氢叶酸没有积累,这表明二氢蝶酸合成步骤存在通量限制。我们所达到的叶酸水平在不到一份标准食用量的情况下就能满足成年人一天的全部需求。

相似文献

1
Folate biofortification of tomato fruit.番茄果实的叶酸生物强化
Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4218-22. doi: 10.1073/pnas.0700409104. Epub 2007 Mar 5.
8
Enhancement of folates in plants through metabolic engineering.通过代谢工程提高植物中的叶酸含量。
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):5158-63. doi: 10.1073/pnas.0401342101. Epub 2004 Mar 24.

引用本文的文献

5
Synthetic biology and artificial intelligence in crop improvement.合成生物学与人工智能在作物改良中的应用
Plant Commun. 2025 Feb 10;6(2):101220. doi: 10.1016/j.xplc.2024.101220. Epub 2024 Dec 12.
6
Plant Biosystems Design Research Roadmap 1.0.植物生物系统设计研究路线图1.0
Biodes Res. 2020 Dec 5;2020:8051764. doi: 10.34133/2020/8051764. eCollection 2020.

本文引用的文献

3
Biofortification of staple food crops.主食作物的生物强化
J Nutr. 2006 Apr;136(4):1064-7. doi: 10.1093/jn/136.4.1064.
9
Folate and vitamin B12 recommended intakes and status in the United States.美国叶酸和维生素B12的推荐摄入量及状况
Nutr Rev. 2004 Jun;62(6 Pt 2):S14-20; discussion S21. doi: 10.1111/j.1753-4887.2004.tb00065.x.
10
Physiology of folate and vitamin B12 in health and disease.健康与疾病状态下叶酸和维生素B12的生理学
Nutr Rev. 2004 Jun;62(6 Pt 2):S3-12; discussion S13. doi: 10.1111/j.1753-4887.2004.tb00070.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验