Moehle Erica A, Rock Jeremy M, Lee Ya-Li, Jouvenot Yann, DeKelver Russell C, Gregory Philip D, Urnov Fyodor D, Holmes Michael C
Sangamo BioSciences, Inc., Point Richmond Technology Center, 501 Canal Boulevard, Suite A100, Richmond, CA 94804, USA.
Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3055-60. doi: 10.1073/pnas.0611478104. Epub 2007 Feb 20.
Efficient incorporation of novel DNA sequences into a specific site in the genome of living human cells remains a challenge despite its potential utility to genetic medicine, biotechnology, and basic research. We find that a precisely placed double-strand break induced by engineered zinc finger nucleases (ZFNs) can stimulate integration of long DNA stretches into a predetermined genomic location, resulting in high-efficiency site-specific gene addition. Using an extrachromosomal DNA donor carrying a 12-bp tag, a 900-bp ORF, or a 1.5-kb promoter-transcription unit flanked by locus-specific homology arms, we find targeted integration frequencies of 15%, 6%, and 5%, respectively, within 72 h of treatment, and with no selection for the desired event. Importantly, we find that the integration event occurs in a homology-directed manner and leads to the accurate reconstruction of the donor-specified genotype at the endogenous chromosomal locus, and hence presumably results from synthesis-dependent strand annealing repair of the break using the donor DNA as a template. This site-specific gene addition occurs with no measurable increase in the rate of random integration. Remarkably, we also find that ZFNs can drive the addition of an 8-kb sequence carrying three distinct promoter-transcription units into an endogenous locus at a frequency of 6%, also in the absence of any selection. These data reveal the surprising versatility of the specialized polymerase machinery involved in double-strand break repair, illuminate a powerful approach to mammalian cell engineering, and open the possibility of ZFN-driven gene addition therapy for human genetic disease.
尽管将新的DNA序列有效整合到活的人类细胞基因组中的特定位点对基因医学、生物技术和基础研究具有潜在用途,但这仍然是一个挑战。我们发现,由工程化锌指核酸酶(ZFN)诱导的精确双链断裂可以刺激长DNA片段整合到预定的基因组位置,从而实现高效的位点特异性基因添加。使用携带12bp标签、900bp开放阅读框(ORF)或由位点特异性同源臂侧翼的1.5kb启动子-转录单元的染色体外DNA供体,我们发现在处理72小时内,靶向整合频率分别为15%、6%和5%,且无需对所需事件进行选择。重要的是,我们发现整合事件以同源定向的方式发生,并导致在内源染色体位点精确重建供体指定的基因型,因此推测是由以供体DNA为模板的断裂合成依赖性链退火修复导致的。这种位点特异性基因添加在随机整合率上没有可测量的增加。值得注意的是,我们还发现ZFN可以以6%的频率将携带三个不同启动子-转录单元的8kb序列添加到内源位点,同样无需任何选择。这些数据揭示了参与双链断裂修复的特殊聚合酶机制令人惊讶的多功能性,阐明了一种强大的哺乳动物细胞工程方法,并为人类遗传疾病的ZFN驱动基因添加疗法开辟了可能性。