Aeschlimann Martin, Bauer Michael, Bayer Daniela, Brixner Tobias, García de Abajo F Javier, Pfeiffer Walter, Rohmer Martin, Spindler Christian, Steeb Felix
Fachbereich Physik, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 46, 67663 Kaiserslautern, Germany.
Nature. 2007 Mar 15;446(7133):301-4. doi: 10.1038/nature05595.
Adaptive shaping of the phase and amplitude of femtosecond laser pulses has been developed into an efficient tool for the directed manipulation of interference phenomena, thus providing coherent control over various quantum-mechanical systems. Temporal resolution in the femtosecond or even attosecond range has been demonstrated, but spatial resolution is limited by diffraction to approximately half the wavelength of the light field (that is, several hundred nanometres). Theory has indicated that the spatial limitation to coherent control can be overcome with the illumination of nanostructures: the spatial near-field distribution was shown to depend on the linear chirp of an irradiating laser pulse. An extension of this idea to adaptive control, combining multiparameter pulse shaping with a learning algorithm, demonstrated the generation of user-specified optical near-field distributions in an optimal and flexible fashion. Shaping of the polarization of the laser pulse provides a particularly efficient and versatile nano-optical manipulation method. Here we demonstrate the feasibility of this concept experimentally, by tailoring the optical near field in the vicinity of silver nanostructures through adaptive polarization shaping of femtosecond laser pulses and then probing the lateral field distribution by two-photon photoemission electron microscopy. In this combination of adaptive control and nano-optics, we achieve subwavelength dynamic localization of electromagnetic intensity on the nanometre scale and thus overcome the spatial restrictions of conventional optics. This experimental realization of theoretical suggestions opens a number of perspectives in coherent control, nano-optics, nonlinear spectroscopy, and other research fields in which optical investigations are carried out with spatial or temporal resolution.
飞秒激光脉冲的相位和幅度的自适应整形已发展成为一种用于定向操纵干涉现象的有效工具,从而实现对各种量子力学系统的相干控制。已证明在飞秒甚至阿秒范围内具有时间分辨率,但空间分辨率受衍射限制,约为光场波长的一半(即几百纳米)。理论表明,通过纳米结构的照明可以克服相干控制的空间限制:空间近场分布显示取决于照射激光脉冲的线性啁啾。将这一想法扩展到自适应控制,将多参数脉冲整形与学习算法相结合,以最优且灵活的方式展示了用户指定的光学近场分布的生成。激光脉冲偏振的整形提供了一种特别有效且通用的纳米光学操纵方法。在此,我们通过飞秒激光脉冲的自适应偏振整形来定制银纳米结构附近的光学近场,然后通过双光子光发射电子显微镜探测横向场分布,从而通过实验证明了这一概念的可行性。在这种自适应控制与纳米光学的结合中,我们在纳米尺度上实现了电磁强度的亚波长动态定位,从而克服了传统光学的空间限制。理论建议的这一实验实现为相干控制、纳米光学、非线性光谱学以及其他以空间或时间分辨率进行光学研究的研究领域开辟了许多前景。