Dreher Pascal, Janoschka David, Giessen Harald, Schützhold Ralf, Davis Timothy J, Horn-von Hoegen Michael, Meyer Zu Heringdorf Frank-J
Faculty of Physics and Center for Nanointegration, Duisburg-Essen (CENIDE), University of Duisburg-Essen, 47048 Duisburg, Germany.
4th Physics Institute, Research Center SCoPE, and Integrated Quantum Science and Technology Center, University of Stuttgart, 70569 Stuttgart, Germany.
Nanophotonics. 2024 Mar 5;13(9):1593-1602. doi: 10.1515/nanoph-2023-0776. eCollection 2024 Apr.
Quantum path interferences occur whenever multiple equivalent and coherent transitions result in a common final state. Such interferences strongly modify the probability of a particle to be found in that final state, a key concept of quantum coherent control. When multiple nonlinear and energy-degenerate transitions occur in a system, the multitude of possible quantum path interferences is hard to disentangle experimentally. Here, we analyze quantum path interferences during the nonlinear emission of electrons from hybrid plasmonic and photonic fields using time-resolved photoemission electron microscopy. We experimentally distinguish quantum path interferences by exploiting the momentum difference between photons and plasmons and through balancing the relative contributions of their respective fields. Our work provides a fundamental understanding of the nonlinear photon-plasmon-electron interaction. Distinguishing emission processes in momentum space, as introduced here, could allow nano-optical quantum-correlations to be studied without destroying the quantum path interferences.
只要多个等效且相干的跃迁导致共同的终态,就会发生量子路径干涉。这种干涉会强烈改变粒子处于该终态的概率,这是量子相干控制的一个关键概念。当系统中发生多个非线性且能量简并的跃迁时,众多可能的量子路径干涉很难通过实验来解开。在此,我们使用时间分辨光发射电子显微镜分析了混合等离子体和光子场中电子的非线性发射过程中的量子路径干涉。我们通过利用光子和等离子体之间的动量差并平衡它们各自场的相对贡献,从实验上区分了量子路径干涉。我们的工作为非线性光子 - 等离子体 - 电子相互作用提供了基本的理解。如本文所介绍的,在动量空间中区分发射过程,可能允许在不破坏量子路径干涉的情况下研究纳米光学量子关联。