Suppr超能文献

选定操作条件下淋浴水的粒径分布与吸入剂量

Particle size distribution and inhalation dose of shower water under selected operating conditions.

作者信息

Zhou Yue, Benson Janet M, Irvin Clinton, Irshad Hammad, Cheng Yung-Sung

机构信息

Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA.

出版信息

Inhal Toxicol. 2007 Apr;19(4):333-42. doi: 10.1080/08958370601144241.

Abstract

Showering produces respirable droplets that may serve to deposit pollutants such as trihalomethane decontamination products, heavy metals, inorganic salts, microbes, or cyanoacterial toxins within the respiratory tract. The extent and importance of this route of indoor exposure depend on the physical characteristics of the aerosol as well as the pollutant profile of the source water. The purpose of this study was to characterize shower-generated aerosols as a function of water flow rate, temperature, and bathroom location. Aerosols were generated within a shower stall containing a mannequin to simulate the presence of a human. Using hot water, the mass median diameter (MMD) of the droplets inside the shower and in the bathroom were 6.3-7.5 um and 5.2-6 microm, respectively. Size was independent of water flow rate. The particle concentration inside the shower ranged from 5 to 14 mg/m3. Aerosols generated using cold water were smaller (2.5-3.1 microm) and concentrations were lower (0.02-0.1 mg/m3) inside the shower stall. No aerosols were detected in the bathroom area when cold water was used. The International Commission on Radiological Protection model was used to estimate water deposition in the respiratory tract. For hot water, total deposition ranged from 11 to 14 mg, depending on water flow rate, with approximately 50% of this deposited in the extrathoracic region during assumed mouth breathing, and greater than 86% when nose breathing was assumed. Alveolar deposition was 6-10% and 0.9% assuming oral and nasal breathing, respectively. The consequences deposition of shower water droplets will depend on the nature and extent of any pollutants in the source water.

摘要

淋浴会产生可吸入的飞沫,这些飞沫可能会将污染物(如三卤甲烷去污产物、重金属、无机盐、微生物或蓝藻毒素)沉积在呼吸道内。这种室内暴露途径的程度和重要性取决于气溶胶的物理特性以及源水的污染物特征。本研究的目的是将淋浴产生的气溶胶表征为水流速率、温度和浴室位置的函数。在一个装有人体模型以模拟人体存在的淋浴间内产生气溶胶。使用热水时,淋浴间内和浴室中的飞沫质量中值直径(MMD)分别为6.3 - 7.5微米和5.2 - 6微米。尺寸与水流速率无关。淋浴间内的颗粒浓度范围为5至14毫克/立方米。使用冷水产生的气溶胶较小(2.5 - 3.1微米),淋浴间内的浓度较低(0.02 - 0.1毫克/立方米)。使用冷水时,在浴室区域未检测到气溶胶。使用国际放射防护委员会模型来估计呼吸道中的水沉积量。对于热水,总沉积量范围为11至14毫克,具体取决于水流速率,在假设口呼吸时,约50%沉积在胸外区域,假设鼻呼吸时则超过86%。假设口呼吸和鼻呼吸时,肺泡沉积分别为6 - 至10%和0.9%。淋浴水滴的沉积后果将取决于源水中任何污染物的性质和程度。

相似文献

1
Particle size distribution and inhalation dose of shower water under selected operating conditions.
Inhal Toxicol. 2007 Apr;19(4):333-42. doi: 10.1080/08958370601144241.
2
Inhalation exposure to haloacetic acids and haloketones during showering.
Environ Sci Technol. 2003 Feb 1;37(3):569-76. doi: 10.1021/es025747z.
3
Continuous monitoring of particle emissions during showering.
J Air Waste Manag Assoc. 2006 Dec;56(12):1662-8. doi: 10.1080/10473289.2006.10464571.
7
Aerosols containing Legionella pneumophila generated by shower heads and hot-water faucets.
Appl Environ Microbiol. 1985 Nov;50(5):1128-31. doi: 10.1128/aem.50.5.1128-1131.1985.
8
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
9
Nanoparticles-containing spray can aerosol: characterization, exposure assessment, and generator design.
Inhal Toxicol. 2010 Nov;22(13):1072-82. doi: 10.3109/08958378.2010.518323. Epub 2010 Oct 12.
10
Effect of Nasal Inhalation on Drug Particle Deposition and Size Distribution in the Upper Airway: With Soft Mist Inhalers.
Ann Biomed Eng. 2024 May;52(5):1195-1212. doi: 10.1007/s10439-023-03423-7. Epub 2024 Mar 20.

引用本文的文献

2
Shower water contributes viable nontuberculous mycobacteria to indoor air.
PNAS Nexus. 2022 Nov 10;1(5):pgac145. doi: 10.1093/pnasnexus/pgac145. eCollection 2022 Nov.
3
New aspects in deriving health-based guidance values for bromate in swimming pool water.
Arch Toxicol. 2022 Jun;96(6):1623-1659. doi: 10.1007/s00204-022-03255-9. Epub 2022 Apr 6.
4
Risk Exposure to during Showering: The Difference between a Classical and a Water Saving Shower System.
Int J Environ Res Public Health. 2022 Mar 10;19(6):3285. doi: 10.3390/ijerph19063285.
5
Ultrastructure of the Mycobacterium avium subsp. hominissuis Biofilm.
Microbes Environ. 2021;36(1). doi: 10.1264/jsme2.ME20128.
6
Possible aerosol transmission of COVID-19 associated with an outbreak in an apartment in Seoul, South Korea, 2020.
Int J Infect Dis. 2021 Mar;104:73-76. doi: 10.1016/j.ijid.2020.12.035. Epub 2020 Dec 17.
7
as a Health Hazard to Miners: A Pilot Study of Water Quality and QMRA.
Water (Basel). 2019 Aug;11(8). doi: 10.3390/w11081528. Epub 2019 Jul 24.
8
Investigation of atmospheric conditions fostering the spreading of legionnaires' disease in outbreaks related to cooling towers.
Int J Biometeorol. 2019 Oct;63(10):1347-1356. doi: 10.1007/s00484-019-01751-9. Epub 2019 Jul 24.
9
Evaluation of Exposure to and during Showering.
J Aerosol Sci. 2017 Dec;114:77-93. doi: 10.1016/j.jaerosci.2017.08.008.
10
: A possible causative agent in human morbidity and risk to public health safety.
Open Vet J. 2018;8(2):172-181. doi: 10.4314/ovj.v8i2.10. Epub 2018 May 19.

本文引用的文献

1
Continuous monitoring of particle emissions during showering.
J Air Waste Manag Assoc. 2006 Dec;56(12):1662-8. doi: 10.1080/10473289.2006.10464571.
2
The toxicity of microcystin LR in mice following 7 days of inhalation exposure.
Toxicon. 2005 May;45(6):691-8. doi: 10.1016/j.toxicon.2005.01.004.
3
Inhalation exposure to haloacetic acids and haloketones during showering.
Environ Sci Technol. 2003 Feb 1;37(3):569-76. doi: 10.1021/es025747z.
5
Household exposures to drinking water disinfection by-products: whole blood trihalomethane levels.
J Expo Anal Environ Epidemiol. 2000 Jul-Aug;10(4):321-6. doi: 10.1038/sj.jea.7500098.
7
An estimate of population exposures due to radon in public water supplies in the area of Houston, Texas.
Health Phys. 1981 Oct;41(4):599-606. doi: 10.1097/00004032-198110000-00002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验