Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA.
Environ Health Perspect. 2024 May;132(5):56001. doi: 10.1289/EHP12695. Epub 2024 May 10.
Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control.
The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies.
We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy.
We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, spp., , influenza, and . Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, ) studies presented policy-relevant content including ) determining disease burden to call for policy intervention, ) determining risk-based threshold values for regulations, ) informing intervention and control strategies, and ) making recommendations and suggestions for QMRA application in policy.
We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
呼吸道感染是全球疾病负担的主要原因。定量微生物风险评估(QMRA)作为一种快速部署的框架,具有了解呼吸道病原体传播并为感染控制政策提供信息的潜力。
本文旨在评估、激发和进一步阐明 QMRA 作为一种快速工具的使用,以了解呼吸道病原体的传播并为感染控制政策提供更好的证据基础。
我们进行了文献综述,以确定关于呼吸道病原体气溶胶吸入或接触传播的完整 QMRA 框架的同行评审研究。从每一项已确定的研究中,我们提取并总结了所应用的暴露模型方法、剂量反应模型和参数值的信息,包括风险特征描述。最后,我们回顾了模型结果与政策之间的联系。
我们确定了 93 项在 16 个不同国家进行的研究,这些研究都具有针对多种呼吸道病原体(包括 SARS-CoV-2、 种、 、流感和 )的完整 QMRA 框架。在不同和复杂的传播途径中,我们确定了 6 种不同的暴露模型。在 57 项研究中,暴露模型框架是根据其模拟潜在干预措施效果的能力来确定的。在干预措施中,掩蔽、通风、社会隔离和其他环境源控制措施通常被评估。通过敏感性分析,病原体浓度、气溶胶浓度和分配系数是具有影响力的暴露参数。大多数(84%, )研究提出了与政策相关的内容,包括)确定疾病负担以呼吁采取政策干预,)确定法规风险阈值,)为干预和控制策略提供信息,以及)为 QMRA 在政策中的应用提出建议和意见。
我们确定了需要进一步发展针对呼吸道病原体的 QMRA 框架,这些框架应优先考虑适当的气溶胶暴露建模方法,考虑模型有效性和复杂性之间的权衡,并纳入可增强 QMRA 结果可信度的研究。https://doi.org/10.1289/EHP12695.