Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
Ann Biomed Eng. 2024 May;52(5):1195-1212. doi: 10.1007/s10439-023-03423-7. Epub 2024 Mar 20.
Delivery of drugs to the lungs is commonly achieved using nasal and/or oral breathing-assisted techniques. The route of inhalation can substantially change the fate of inhaled droplets. The Respimat® Soft Mist™ Inhaler (SMI) is a commercially available efficient inhaler with 40-60% effectiveness. In the present study, we used computational fluid dynamics (CFD) with a custom setup to investigate the effect of a combined oral/nasal inhalation route on the SMI's regional droplet deposition, size distribution, and flow field. Our setup used a modified induction port (MIP) to mimic nasal inhalation inside the human respiratory tract. Six different oral/nasal flow rate ratios inside the MIP were applied (total flow rate of 30 l/min). An overall good agreement was achieved between simulation outcomes and in vitro results. Our results confirmed that the combined inhalation route affects the flow field, altering the MIP's droplet deposition and size distribution. The lowest depositional loss, mainly in the mouth area, was observed at oral/nasal flow rate ratios of O/N = 1 and O/N = 2 with 3% and 7.7% values, respectively. Droplets with a 2-5 µm diameter range showed the highest droplet mass inside the MIP at all combined flow rates. We observed less intense vortexes followed by a lower level of turbulent kinetic energy at the oral/nasal ratio of 1. Increasing the relative humidity (RH) at oral/nasal flow rate ratios of 0.07, 1, and 14 led to an increase in droplet deposition at the outlet of the MIP.
肺部给药通常采用鼻腔和/或口腔呼吸辅助技术。吸入途径可显著改变吸入液滴的命运。Respimat® Soft Mist™ 吸入器(SMI)是一种商业上有效的高效吸入器,有效率为 40-60%。在本研究中,我们使用具有自定义设置的计算流体动力学(CFD)来研究联合口腔/鼻腔吸入途径对 SMI 局部液滴沉积、粒径分布和流场的影响。我们的设置使用改进的诱导端口(MIP)来模拟人体呼吸道内的鼻腔吸入。在 MIP 内应用了六种不同的口腔/鼻腔气流率比(总气流率为 30 l/min)。模拟结果与体外结果之间达到了很好的一致性。我们的结果证实,联合吸入途径会影响流场,改变 MIP 的液滴沉积和粒径分布。在口腔/鼻腔气流率比为 O/N=1 和 O/N=2 时,沉积损失最低,主要在口腔区域,分别为 3%和 7.7%。在所有组合流速下,直径范围为 2-5 µm 的液滴在 MIP 内显示出最高的液滴质量。我们观察到在口腔/鼻腔比例为 1 时,涡旋强度较弱,随后湍流动能水平较低。在口腔/鼻腔气流率比为 0.07、1 和 14 时增加相对湿度(RH)会导致 MIP 出口处的液滴沉积增加。