Suppr超能文献

在孟加拉国阿拉伊扎尔利用移动电话技术定位低砷地下水。

Targeting low-arsenic groundwater with mobile-phone technology in Araihazar, Bangladesh.

作者信息

van Geen A, Trevisani M, Immel J, Jakariya Md, Osman N, Cheng Z, Gelman A, Ahmed K M

机构信息

Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, 10964, USA.

出版信息

J Health Popul Nutr. 2006 Sep;24(3):282-97.

Abstract

The Bangladesh Arsenic Mitigation and Water Supply Program (BAMWSP) has compiled field-kit measurements of the arsenic content of groundwater for nearly five million wells. By comparing the spatial distribution of arsenic inferred from these field-kit measurements with geo-referenced laboratory data in a portion of Araihazar upazila, it is shown here that the BAMWSP data could be used for targeting safe aquifers for the installation of community wells in many villages of Bangladesh. Recent experiences with mobile-phone technology to access and update the BAMWSP data in the field are also described. It is shown that the technology, without guaranteeing success, could optimize interventions by guiding the choice of the drilling method that is likely to reach a safe aquifer and identifying those villages where exploratory drilling is needed.

摘要

孟加拉国砷减排与供水项目(BAMWSP)已收集了近500万口水井地下水砷含量的现场检测数据。通过将这些现场检测数据推断出的砷空间分布与阿拉伊扎尔乡部分地区的地理参考实验室数据进行比较,本文表明,BAMWSP数据可用于确定孟加拉国许多村庄中适合安装社区水井的安全含水层。文中还介绍了近期利用移动电话技术在实地获取和更新BAMWSP数据的经验。结果表明,该技术虽不能保证成功,但可通过指导选择可能打到安全含水层的钻探方法以及确定需要进行勘探性钻探的村庄来优化干预措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15a8/3013249/a636d7a0ef17/jhpn0024-0282_f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验