Suppr超能文献

结构域交换实验表明,DnaG的C端结构域和DnaB的N端结构域分别是功能同源物。

Domain swapping reveals that the C- and N-terminal domains of DnaG and DnaB, respectively, are functional homologues.

作者信息

Chintakayala Kiran, Larson Marilynn A, Grainger William H, Scott David J, Griep Mark A, Hinrichs Steven H, Soultanas Panos

机构信息

Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

出版信息

Mol Microbiol. 2007 Mar;63(6):1629-39. doi: 10.1111/j.1365-2958.2007.05617.x.

Abstract

The bacterial primase (DnaG)-helicase (DnaB) interaction is mediated by the C-terminal domain of DnaG (p16) and a linker that joins the N- and C-terminal domains (p17 and p33 respectively) of DnaB. The crystal and nuclear magnetic resonance structures of p16 from Escherichia coli and Bacillus stearothermophilus DnaG proteins revealed a unique structural homology with p17, despite the lack of amino acid sequence similarity. The functional significance of this is not clear. Here, we have employed a 'domain swapping' approach to replace p17 with its structural homologue p16 to create chimeras. p33 alone hydrolyses ATP but exhibits no helicase activity. Fusing p16 (p16-p33) or DnaG (G-p33) to the N-terminus of p33 produced chimeras with partially restored helicase activities. Neither chimera interacted with DnaG. The p16-p33 chimera formed hexamers while G-p33 assembled into tetramers. Furthermore, G-p33 and DnaB formed mixed oligomers with ATPase activity better than that of the DnaB/DnaG complex and helicase activity better than the sum of the individual DnaB and G-p33 activities but worse than that of the DnaB/DnaG complex. Our combined data provide direct evidence that p16 and p17 are not only structural but also functional homologues, albeit their amino acid composition differences are likely to influence their precise roles.

摘要

细菌引发酶(DnaG)与解旋酶(DnaB)的相互作用由DnaG的C末端结构域(p16)以及连接DnaB的N末端和C末端结构域(分别为p17和p33)的接头介导。来自大肠杆菌和嗜热脂肪芽孢杆菌DnaG蛋白的p16的晶体结构和核磁共振结构显示,尽管缺乏氨基酸序列相似性,但与p17具有独特的结构同源性。其功能意义尚不清楚。在这里,我们采用了“结构域交换”方法,用其结构同源物p16取代p17来构建嵌合体。单独的p33能水解ATP,但不具有解旋酶活性。将p16(p16-p33)或DnaG(G-p33)融合到p33的N末端,产生了解旋酶活性部分恢复的嵌合体。两种嵌合体均不与DnaG相互作用。p16-p33嵌合体形成六聚体,而G-p33组装成四聚体。此外,G-p33和DnaB形成的混合寡聚体具有比DnaB/DnaG复合物更好的ATP酶活性和解旋酶活性,该解旋酶活性优于单独的DnaB和G-p33活性之和,但比DnaB/DnaG复合物的活性差。我们的综合数据提供了直接证据,表明p16和p17不仅是结构同源物,也是功能同源物,尽管它们的氨基酸组成差异可能会影响它们的确切作用。

相似文献

1
2
Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase.
Science. 2007 Oct 19;318(5849):459-63. doi: 10.1126/science.1147353.
3
Monomeric solution structure of the helicase-binding domain of Escherichia coli DnaG primase.
FEBS J. 2006 Nov;273(21):4997-5009. doi: 10.1111/j.1742-4658.2006.05495.x. Epub 2006 Sep 28.
6
Structural insights into the interaction of helicase and primase in .
Biochem J. 2018 Nov 15;475(21):3493-3509. doi: 10.1042/BCJ20180673.
9
Allosteric regulation of the primase (DnaG) activity by the clamp-loader (tau) in vitro.
Mol Microbiol. 2009 Apr;72(2):537-49. doi: 10.1111/j.1365-2958.2009.06668.x.
10
DnaC, the indispensable companion of DnaB helicase, controls the accessibility of DnaB helicase by primase.
J Biol Chem. 2017 Dec 22;292(51):20871-20882. doi: 10.1074/jbc.M117.807644. Epub 2017 Oct 25.

引用本文的文献

1
A single helicase-binding domain of DnaG couples with hexameric helicase DnaB in .
Biophys Rep. 2025 Aug 31;11(4):283-290. doi: 10.52601/bpr.2024.240059.
3
Inferring primase-DNA specific recognition using a data driven approach.
Nucleic Acids Res. 2021 Nov 18;49(20):11447-11458. doi: 10.1093/nar/gkab956.
4
The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery.
Antibiotics (Basel). 2018 Mar 14;7(1):23. doi: 10.3390/antibiotics7010023.
5
Structural Insight into the Specific DNA Template Binding to DnaG primase in Bacteria.
Sci Rep. 2017 Apr 6;7(1):659. doi: 10.1038/s41598-017-00767-8.
6
Identification of a Ligand-Binding Site on the Staphylococcus aureus DnaG Primase C-Terminal Domain.
Biochemistry. 2017 Feb 21;56(7):932-943. doi: 10.1021/acs.biochem.6b01273. Epub 2017 Feb 9.
8
Nucleotide and partner-protein control of bacterial replicative helicase structure and function.
Mol Cell. 2013 Dec 26;52(6):844-54. doi: 10.1016/j.molcel.2013.11.016.
9
3DSwap: curated knowledgebase of proteins involved in 3D domain swapping.
Database (Oxford). 2011 Sep 29;2011:bar042. doi: 10.1093/database/bar042. Print 2011.

本文引用的文献

2
Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation.
Biophys J. 2006 Jun 15;90(12):4651-61. doi: 10.1529/biophysj.106.081372. Epub 2006 Mar 24.
3
DNA primase acts as a molecular brake in DNA replication.
Nature. 2006 Feb 2;439(7076):621-4. doi: 10.1038/nature04317.
5
Crosstalk between primase subunits can act to regulate primer synthesis in trans.
Mol Cell. 2005 Nov 11;20(3):391-401. doi: 10.1016/j.molcel.2005.09.004.
6
The bacterial helicase-primase interaction: a common structural/functional module.
Structure. 2005 Jun;13(6):839-44. doi: 10.1016/j.str.2005.04.006.
8
Crystal and solution structures of the helicase-binding domain of Escherichia coli primase.
J Biol Chem. 2005 Mar 25;280(12):11495-504. doi: 10.1074/jbc.M412645200. Epub 2005 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验