Suppr超能文献

作为孔长度函数的类短杆菌肽肽孔中单线态水流动性的不变性。

Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length.

作者信息

Portella Guillem, Pohl Peter, de Groot Bert L

机构信息

Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.

出版信息

Biophys J. 2007 Jun 1;92(11):3930-7. doi: 10.1529/biophysj.106.102921. Epub 2007 Mar 16.

Abstract

We investigated the structural and energetic determinants underlying water permeation through peptidic nanopores, motivated by recent experimental findings that indicate that water mobility in single-file water channels displays nonlinear length dependence. To address the molecular mechanism determining the observed length dependence, we studied water permeability in a series of designed gramicidin-like channels of different length using atomistic molecular dynamics simulations. We found that within the studied range of length the osmotic water permeability is independent of pore length. This result is at variance with textbook models, where the relationship is assumed to be linear. Energetic analysis shows that loss of solvation rather than specific water binding sites in the pore form the main energetic barrier for water permeation, consistent with our dynamics results. For this situation, we propose a modified expression for osmotic permeability that fully takes into account water motion collectivity and does not depend on the pore length. Different schematic barrier profiles are discussed that explain both experimental and computational interpretations, and we propose a set of experiments aimed at validation of the presented results. Implications of the results for the design of peptidic channels with desired permeation characteristics are discussed.

摘要

近期的实验结果表明,单排水分子通道中的水迁移率呈现非线性长度依赖性,受此启发,我们研究了肽纳米孔水渗透的结构和能量决定因素。为了探究决定观察到的长度依赖性的分子机制,我们使用原子分子动力学模拟研究了一系列不同长度的设计类短杆菌肽通道的水渗透性。我们发现,在所研究的长度范围内,渗透水渗透率与孔长度无关。这一结果与教科书模型不同,教科书模型中假设二者关系为线性。能量分析表明,溶剂化的损失而非孔中特定的水结合位点构成了水渗透的主要能量障碍,这与我们的动力学结果一致。针对这种情况,我们提出了一种修正的渗透表达式,该表达式充分考虑了水运动的集体性,且不依赖于孔长度。我们讨论了不同的示意性势垒剖面图,这些图解释了实验和计算结果,并提出了一组旨在验证所得结果的实验。讨论了这些结果对设计具有所需渗透特性的肽通道的意义。

相似文献

1
Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length.
Biophys J. 2007 Jun 1;92(11):3930-7. doi: 10.1529/biophysj.106.102921. Epub 2007 Mar 16.
2
Mobility of a one-dimensional confined file of water molecules as a function of file length.
Phys Rev Lett. 2006 Apr 14;96(14):148101. doi: 10.1103/PhysRevLett.96.148101. Epub 2006 Apr 10.
3
Design of peptide-membrane interactions to modulate single-file water transport through modified gramicidin channels.
Biophys J. 2012 Oct 17;103(8):1698-705. doi: 10.1016/j.bpj.2012.08.059. Epub 2012 Oct 16.
4
Determinants of water permeability through nanoscopic hydrophilic channels.
Biophys J. 2009 Feb;96(3):925-38. doi: 10.1016/j.bpj.2008.09.059.
5
Not only enthalpy: large entropy contribution to ion permeation barriers in single-file channels.
Biophys J. 2008 Sep;95(5):2275-82. doi: 10.1529/biophysj.108.130609. Epub 2008 May 30.
7
Steered molecular dynamics simulations of Na+ permeation across the gramicidin A channel.
J Phys Chem B. 2006 Jun 29;110(25):12789-95. doi: 10.1021/jp060688n.
9
Functional dynamics of ion channels: modulation of proton movement by conformational switches.
J Am Chem Soc. 2003 Nov 12;125(45):13890-4. doi: 10.1021/ja0353208.
10
Desformylgramicidin: a model channel with an extremely high water permeability.
Biophys J. 2000 Nov;79(5):2526-34. doi: 10.1016/S0006-3495(00)76493-9.

引用本文的文献

1
Collective Domain Motion Facilitates Water Transport in SGLT1.
Int J Mol Sci. 2023 Jun 23;24(13):10528. doi: 10.3390/ijms241310528.
2
The energetic barrier to single-file water flow through narrow channels.
Biophys Rev. 2021 Nov 23;13(6):913-923. doi: 10.1007/s12551-021-00875-w. eCollection 2021 Dec.
3
Osmotic and diffusive flows in single-file pores: new approach to modeling pore occupancy states.
Theor Biol Med Model. 2018 Oct 1;15(1):15. doi: 10.1186/s12976-018-0087-8.
4
PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore.
Nat Commun. 2018 Sep 10;9(1):3661. doi: 10.1038/s41467-018-06097-1.
5
Single-file transport of water through membrane channels.
Faraday Discuss. 2018 Sep 28;209(0):9-33. doi: 10.1039/c8fd00122g.
6
Positively charged residues at the channel mouth boost single-file water flow.
Faraday Discuss. 2018 Sep 28;209(0):55-65. doi: 10.1039/c8fd00050f.
7
Water Determines the Structure and Dynamics of Proteins.
Chem Rev. 2016 Jul 13;116(13):7673-97. doi: 10.1021/acs.chemrev.5b00664. Epub 2016 May 17.
8
Molecular dynamics of water in the neighborhood of aquaporins.
Eur Biophys J. 2013 Apr;42(4):223-39. doi: 10.1007/s00249-012-0880-y. Epub 2012 Dec 29.
9
Design of peptide-membrane interactions to modulate single-file water transport through modified gramicidin channels.
Biophys J. 2012 Oct 17;103(8):1698-705. doi: 10.1016/j.bpj.2012.08.059. Epub 2012 Oct 16.
10
Single-file water in nanopores.
Phys Chem Chem Phys. 2011 Sep 14;13(34):15403-17. doi: 10.1039/c1cp21086f. Epub 2011 Jul 21.

本文引用的文献

1
Water transport mechanisms: water movement through lipid bilayers, pores, and plasma membranes.
Science. 1988 Apr 8;240(4849):228. doi: 10.1126/science.240.4849.228.
2
Mobility of a one-dimensional confined file of water molecules as a function of file length.
Phys Rev Lett. 2006 Apr 14;96(14):148101. doi: 10.1103/PhysRevLett.96.148101. Epub 2006 Apr 10.
3
Mechanisms of valence selectivity in biological ion channels.
Cell Mol Life Sci. 2006 Feb;63(3):301-15. doi: 10.1007/s00018-005-5405-8.
4
Crown ether-gramicidin hybrid ion channels: dehydration-assisted ion selectivity.
Angew Chem Int Ed Engl. 2006 Jan 9;45(3):501-4. doi: 10.1002/anie.200502570.
5
GROMACS: fast, flexible, and free.
J Comput Chem. 2005 Dec;26(16):1701-18. doi: 10.1002/jcc.20291.
6
Ion conduction and selectivity in K(+) channels.
Annu Rev Biophys Biomol Struct. 2005;34:153-71. doi: 10.1146/annurev.biophys.34.040204.144655.
7
Collective diffusion model for water permeation through microscopic channels.
Phys Rev Lett. 2004 Nov 26;93(22):224501. doi: 10.1103/PhysRevLett.93.224501. Epub 2004 Nov 24.
8
Combined transport of water and ions through membrane channels.
Biol Chem. 2004 Oct;385(10):921-6. doi: 10.1515/BC.2004.120.
9
Computational studies of membrane channels.
Structure. 2004 Aug;12(8):1343-51. doi: 10.1016/j.str.2004.06.013.
10
Gramicidin-based channel systems for the detection of protein-ligand interaction.
Bioorg Med Chem. 2004 Mar 15;12(6):1343-50. doi: 10.1016/j.bmc.2003.06.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验