Suppr超能文献

单分子层水在纳米孔中。

Single-file water in nanopores.

机构信息

Laboratory of Chemical Physics, Bldg. 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Phys Chem Chem Phys. 2011 Sep 14;13(34):15403-17. doi: 10.1039/c1cp21086f. Epub 2011 Jul 21.

Abstract

Water molecules confined to pores with sub-nanometre diameters form single-file hydrogen-bonded chains. In such nanoscale confinement, water has unusual physical properties that are exploited in biology and hold promise for a wide range of biomimetic and nanotechnological applications. The latter can be realized by carbon and boron nitride nanotubes which confine water in a relatively non-specific way and lend themselves to the study of intrinsic properties of single-file water. As a consequence of strong water-water hydrogen bonds, many characteristics of single-file water are conserved in biological and synthetic pores despite differences in their atomistic structures. Charge transport and orientational order in water chains depend sensitively on and are mainly determined by electrostatic effects. Thus, mimicking functions of biological pores with apolar pores and corresponding external fields gives insight into the structure-function relation of biological pores and allows the development of technical applications beyond the molecular devices found in living systems. In this Perspective, we revisit results for single-file water in apolar pores, and examine the similarities and the differences between these simple systems and water in more complex pores.

摘要

水分子被限制在亚纳米直径的孔隙中,形成单链氢键。在这种纳米尺度的限制下,水具有不寻常的物理性质,这些性质在生物学中得到了利用,并为广泛的仿生学和纳米技术应用带来了希望。后者可以通过碳和氮化硼纳米管来实现,这些纳米管以相对非特异性的方式限制水,并适合研究单链水的固有性质。由于强的水分子氢键,尽管它们的原子结构不同,单链水中的许多特性在生物和合成孔隙中都得到了保留。水链中的电荷输运和取向有序性对静电效应非常敏感,并主要由其决定。因此,用非极性孔隙和相应的外部场来模拟生物孔隙的功能,可以深入了解生物孔隙的结构-功能关系,并允许开发超越生命系统中发现的分子器件的技术应用。在本观点中,我们重新审视了非极性孔隙中单链水的结果,并比较了这些简单系统与更复杂孔隙中水中的相似性和差异性。

相似文献

1
Single-file water in nanopores.
Phys Chem Chem Phys. 2011 Sep 14;13(34):15403-17. doi: 10.1039/c1cp21086f. Epub 2011 Jul 21.
2
Manipulating biomolecules with aqueous liquids confined within single-walled nanotubes.
J Am Chem Soc. 2009 Mar 4;131(8):2840-5. doi: 10.1021/ja804586w.
4
Accelerating water transport through a charged SWCNT: a molecular dynamics simulation.
Phys Chem Chem Phys. 2013 Sep 14;15(34):14447-57. doi: 10.1039/c3cp51855h. Epub 2013 Jul 25.
5
Confined Water: Structure, Dynamics, and Thermodynamics.
Acc Chem Res. 2017 Sep 19;50(9):2139-2146. doi: 10.1021/acs.accounts.6b00617. Epub 2017 Aug 15.
6
Kinetics and mechanism of proton transport across membrane nanopores.
Phys Rev Lett. 2006 Dec 15;97(24):245901. doi: 10.1103/PhysRevLett.97.245901. Epub 2006 Dec 11.
7
Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
Chem Rev. 2020 Sep 23;120(18):10298-10335. doi: 10.1021/acs.chemrev.9b00830. Epub 2020 Aug 25.
8
Vibrational spectroscopy of water in narrow nanopores.
J Phys Chem B. 2011 May 12;115(18):5268-77. doi: 10.1021/jp109037q. Epub 2011 Jan 31.
10
Water confinement in nanoporous silica materials.
J Chem Phys. 2014 Jan 28;140(4):044704. doi: 10.1063/1.4862648.

引用本文的文献

4
Spontaneous Dipole Reorientation in Confined Water and Its Effect on Wetting/Dewetting of Hydrophobic Nanopores.
ACS Appl Mater Interfaces. 2024 Feb 14;16(6):7604-7616. doi: 10.1021/acsami.3c17272. Epub 2024 Feb 1.
5
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.
Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10.
6
Aquaporin Gating: A New Twist to Unravel Permeation through Water Channels.
Int J Mol Sci. 2022 Oct 14;23(20):12317. doi: 10.3390/ijms232012317.
8
Molecular-Level Control over Ionic Conduction and Ionic Current Direction by Designing Macrocycle-Based Ionomers.
JACS Au. 2022 May 11;2(5):1144-1159. doi: 10.1021/jacsau.2c00143. eCollection 2022 May 23.
9
Current Understanding of Water Properties inside Carbon Nanotubes.
Nanomaterials (Basel). 2022 Jan 5;12(1):174. doi: 10.3390/nano12010174.
10
Structure and dynamics of water confined in cylindrical nanopores with varying hydrophobicity.
Philos Trans A Math Phys Eng Sci. 2021 Oct 18;379(2208):20200403. doi: 10.1098/rsta.2020.0403. Epub 2021 Aug 30.

本文引用的文献

1
Microscopic properties of nanopore water from its time-dependent dielectric response.
Phys Rev B Condens Matter Mater Phys. 2010 Nov 10;82(20). doi: 10.1103/PhysRevB.82.205416.
2
Single-file water as a one-dimensional Ising model.
New J Phys. 2010 Sep 27;12. doi: 10.1088/1367-2630/12/9/093044.
3
Measurement of the rate of water translocation through carbon nanotubes.
Nano Lett. 2011 May 11;11(5):2173-7. doi: 10.1021/nl200843g. Epub 2011 Apr 4.
4
Water on graphene surfaces.
J Phys Condens Matter. 2010 Jul 21;22(28):284111. doi: 10.1088/0953-8984/22/28/284111. Epub 2010 Jun 21.
5
Separation and diameter-sorting of empty (end-capped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation.
Angew Chem Int Ed Engl. 2011 Mar 14;50(12):2764-8. doi: 10.1002/anie.201007324. Epub 2011 Feb 22.
7
Bottom-up realization of a porous metal-organic nanotubular assembly.
Nat Mater. 2011 Apr;10(4):291-5. doi: 10.1038/nmat2963. Epub 2011 Feb 27.
8
Vibrational spectroscopy of water in narrow nanopores.
J Phys Chem B. 2011 May 12;115(18):5268-77. doi: 10.1021/jp109037q. Epub 2011 Jan 31.
10
Rounding of phase transitions in cylindrical pores.
Phys Rev Lett. 2010 Jul 23;105(4):045701. doi: 10.1103/PhysRevLett.105.045701.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验