Suppr超能文献

动脉壁平滑肌细胞同步化模型。

A model of smooth muscle cell synchronization in the arterial wall.

作者信息

Jacobsen Jens Christian Brings, Aalkjaer Christian, Nilsson Holger, Matchkov Vladimir V, Freiberg Jacob, Holstein-Rathlou Niels-Henrik

机构信息

Biomedical Institute, Division of Renal and Vascular Physiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.

出版信息

Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H229-37. doi: 10.1152/ajpheart.00727.2006. Epub 2007 Mar 16.

Abstract

Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying the initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube. The simulated results point to a permissive role of cGMP in establishing intercellular synchronization. In sufficient concentration, cGMP may activate a cGMP-sensitive calcium-dependent chloride channel, causing a tight spatiotemporal coupling between release of sarcoplasmic reticulum calcium, membrane depolarization, and influx of extracellular calcium. Low [cGMP] is associated only with unsynchronized waves. At intermediate concentrations, cells display either waves or whole cell oscillations, but these remain unsynchronized between cells. Whole cell oscillations are associated with rhythmic variation in membrane potential and flow of current through gap junctions. The amplitude of these oscillations in potential grows with increasing [cGMP], and, past a certain threshold, they become strong enough to entrain all cells in the vascular wall, thereby initiating sustained vasomotion. In this state there is a rhythmic flow of calcium through voltage-sensitive calcium channels into the cytoplasm, making the frequency of established vasomotion sensitive to membrane potential. It is concluded that electrical coupling through gap junctions is likely to be responsible for the rapid synchronization across a large number of cells. Gap-junctional current between cells is due to the appearance of oscillations in the membrane potential that again depends on the entrainment of sarcoplasmic reticulum and plasma membrane within the individual cell.

摘要

血管运动是微血管直径的一种节律性变化。尽管血管运动已被知晓150多年,但引发血管运动的细胞过程仍未完全明确。在本研究中,通过将多个细胞耦合到一根管子中,扩展了单细胞模型。模拟结果表明cGMP在建立细胞间同步方面具有许可作用。在足够的浓度下,cGMP可能激活一种cGMP敏感的钙依赖性氯通道,导致肌浆网钙释放、膜去极化和细胞外钙内流之间紧密的时空耦合。低浓度的[cGMP]仅与非同步波相关。在中等浓度时,细胞表现出波或全细胞振荡,但这些在细胞之间仍未同步。全细胞振荡与膜电位的节律性变化以及通过缝隙连接的电流流动有关。这些电位振荡的幅度随着[cGMP]的增加而增大,并且超过一定阈值后,它们变得足够强大,能够使血管壁中的所有细胞同步,从而引发持续的血管运动。在这种状态下,存在通过电压敏感钙通道进入细胞质的节律性钙流,使得已建立的血管运动频率对膜电位敏感。得出的结论是,通过缝隙连接的电耦合可能是大量细胞快速同步的原因。细胞间的缝隙连接电流是由于膜电位振荡的出现,而膜电位振荡又依赖于单个细胞内肌浆网和质膜的同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验