Han Xu, Sung Wing-Kin, Feng Lin
Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.
Comput Syst Bioinformatics Conf. 2006:123-32.
Replication of time series in microarray experiments is costly. To analyze time series data with no replicate, many model-specific approaches have been proposed. However, they fail to identify the genes whose expression patterns do not fit the pre-defined models. Besides, modeling the temporal expression patterns is difficult when the dynamics of gene expression in the experiment is poorly understood. We propose a method called PEM (Partial Energy ratio for Microarray) for the analysis of time course cDNA microarray data. In the PEM method, we assume the gene expressions vary smoothly in the temporal domain. This assumption is comparatively weak and hence the method is general enough to identify genes expressed in unexpected patterns. To identify the differentially expressed genes, a new statistic is developed by comparing the energies of two convoluted profiles. We further improve the statistic for microarray analysis by introducing the concept of partial energy. The PEM statistic is incorporated into the permutation based SAM framework for significance analysis. We evaluated the PEM method with an artificial dataset and two published time course cDNA microarray datasets on yeast. The experimental results show the robustness and the generality of the PEM method. It outperforms the previous versions of SAM and the spline based EDGE approaches in identifying genes of interest, which are differentially expressed in various manner.
在微阵列实验中对时间序列进行重复实验成本很高。为了分析无重复的时间序列数据,人们提出了许多特定于模型的方法。然而,这些方法无法识别那些表达模式不符合预定义模型的基因。此外,当对实验中基因表达的动态了解不足时,对时间表达模式进行建模是很困难的。我们提出了一种名为PEM(微阵列部分能量比)的方法来分析时间进程cDNA微阵列数据。在PEM方法中,我们假设基因表达在时间域中平滑变化。这个假设相对较弱,因此该方法具有足够的通用性来识别以意外模式表达的基因。为了识别差异表达基因,通过比较两个卷积谱的能量开发了一种新的统计量。我们通过引入部分能量的概念进一步改进了用于微阵列分析的统计量。PEM统计量被纳入基于排列的SAM框架进行显著性分析。我们使用一个人工数据集和两个已发表的关于酵母的时间进程cDNA微阵列数据集对PEM方法进行了评估。实验结果表明了PEM方法的稳健性和通用性。在识别以各种方式差异表达的感兴趣基因方面,它优于之前版本的SAM和基于样条的EDGE方法。