文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 RNA-seq 的时间序列表达分析:一种统计学方法。

Time series expression analyses using RNA-seq: a statistical approach.

机构信息

Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.

出版信息

Biomed Res Int. 2013;2013:203681. doi: 10.1155/2013/203681. Epub 2013 Mar 24.


DOI:10.1155/2013/203681
PMID:23586021
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3622290/
Abstract

RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis.

摘要

RNA-seq 技术正成为转录组分析的一种标准方法,其成本也在不断降低。与传统技术(微阵列)相比,它具有显著优势,因为它可以直接识别和定量转录本。已经收集了许多时间序列 RNA-seq 数据集,用于研究转录本的动态调控。然而,需要统计上严格和计算上高效的方法来探索生物系统中基因表达的时变变化。这些方法应该明确考虑表达模式在时间点之间的依赖性。在这里,我们讨论了几种可用于对时间序列 RNA-seq 数据建模的方法,包括统计进化轨迹指数 (SETI)、自回归时滞回归 (AR(1)) 和隐马尔可夫模型 (HMM) 方法。我们使用三个真实数据集和模拟研究来演示这些动态方法在时间分析中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/dcb4fa25c403/BMRI2013-203681.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/2ff20df38ff1/BMRI2013-203681.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/8a18b0c92831/BMRI2013-203681.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/d13fdafd9749/BMRI2013-203681.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/27af3f4efac4/BMRI2013-203681.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/c87d115f0cab/BMRI2013-203681.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/026d5be45a4c/BMRI2013-203681.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/ae9ccfddb8f0/BMRI2013-203681.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/dcb4fa25c403/BMRI2013-203681.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/2ff20df38ff1/BMRI2013-203681.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/8a18b0c92831/BMRI2013-203681.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/d13fdafd9749/BMRI2013-203681.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/27af3f4efac4/BMRI2013-203681.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/c87d115f0cab/BMRI2013-203681.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/026d5be45a4c/BMRI2013-203681.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/ae9ccfddb8f0/BMRI2013-203681.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc85/3622290/dcb4fa25c403/BMRI2013-203681.008.jpg

相似文献

[1]
Time series expression analyses using RNA-seq: a statistical approach.

Biomed Res Int. 2013-3-24

[2]
Comparative analysis of differential gene expression tools for RNA sequencing time course data.

Brief Bioinform. 2019-1-18

[3]
EBSeq-HMM: a Bayesian approach for identifying gene-expression changes in ordered RNA-seq experiments.

Bioinformatics. 2015-8-15

[4]
A statistical framework for eQTL mapping using RNA-seq data.

Biometrics. 2012-3

[5]
A Markov random field-based approach for joint estimation of differentially expressed genes in mouse transcriptome data.

Stat Appl Genet Mol Biol. 2016-4

[6]
Current and Future Methods for mRNA Analysis: A Drive Toward Single Molecule Sequencing.

Methods Mol Biol. 2018

[7]
EMSAR: estimation of transcript abundance from RNA-seq data by mappability-based segmentation and reclustering.

BMC Bioinformatics. 2015-9-3

[8]
DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data.

BMC Bioinformatics. 2017-5-23

[9]
Statistical Modeling of High Dimensional Counts.

Methods Mol Biol. 2021

[10]
Comparison of alternative approaches for analysing multi-level RNA-seq data.

PLoS One. 2017-8-8

引用本文的文献

[1]
GeTeSEPdb: A comprehensive database and online tool for the identification and analysis of gene profiles with temporal-specific expression patterns.

Comput Struct Biotechnol J. 2024-6-5

[2]
Carotenoids in Health as Studied by Omics-Related Endpoints.

Adv Nutr. 2023-11

[3]
Spatiotemporal Changes in Transcriptome of Odontogenic and Non-odontogenic Regions in the Dental Arch of .

Front Cell Dev Biol. 2021-10-14

[4]
GECO: gene expression clustering optimization app for non-linear data visualization of patterns.

BMC Bioinformatics. 2021-1-25

[5]
Temporal dynamics in meta longitudinal RNA-Seq data.

Sci Rep. 2019-1-24

[6]
Measuring mRNA Levels Over Time During the Yeast S. cerevisiae Hypoxic Response.

J Vis Exp. 2017-8-10

[7]
Independent Component Analysis (ICA) based-clustering of temporal RNA-seq data.

PLoS One. 2017-7-17

[8]
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model.

BMC Bioinformatics. 2016-8-26

[9]
Efficient extraction of small and large RNAs in bacteria for excellent total RNA sequencing and comprehensive transcriptome analysis.

BMC Res Notes. 2015-12-8

[10]
Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis.

Comput Struct Biotechnol J. 2015-8-24

本文引用的文献

[1]
Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data.

Genes (Basel). 2010-9-27

[2]
A whole-cell computational model predicts phenotype from genotype.

Cell. 2012-7-20

[3]
Differential expression--the next generation and beyond.

Brief Funct Genomics. 2011-12-30

[4]
Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis.

Genome Res. 2011-11-22

[5]
Differential expression in RNA-seq: a matter of depth.

Genome Res. 2011-9-8

[6]
On differential gene expression using RNA-Seq data.

Cancer Inform. 2011

[7]
Development and application of a modified dynamic time warping algorithm (DTW-S) to analyses of primate brain expression time series.

BMC Bioinformatics. 2011-8-18

[8]
ExpressionPlot: a web-based framework for analysis of RNA-Seq and microarray gene expression data.

Genome Biol. 2011-7-28

[9]
RNA-seq: technical variability and sampling.

BMC Genomics. 2011-6-6

[10]
A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression.

BMC Bioinformatics. 2011-5-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索