Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
Biomed Res Int. 2013;2013:203681. doi: 10.1155/2013/203681. Epub 2013 Mar 24.
RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have been collected to study the dynamic regulations of transcripts. However, statistically rigorous and computationally efficient methods are needed to explore the time-dependent changes of gene expression in biological systems. These methods should explicitly account for the dependencies of expression patterns across time points. Here, we discuss several methods that can be applied to model timecourse RNA-seq data, including statistical evolutionary trajectory index (SETI), autoregressive time-lagged regression (AR(1)), and hidden Markov model (HMM) approaches. We use three real datasets and simulation studies to demonstrate the utility of these dynamic methods in temporal analysis.
RNA-seq 技术正成为转录组分析的一种标准方法,其成本也在不断降低。与传统技术(微阵列)相比,它具有显著优势,因为它可以直接识别和定量转录本。已经收集了许多时间序列 RNA-seq 数据集,用于研究转录本的动态调控。然而,需要统计上严格和计算上高效的方法来探索生物系统中基因表达的时变变化。这些方法应该明确考虑表达模式在时间点之间的依赖性。在这里,我们讨论了几种可用于对时间序列 RNA-seq 数据建模的方法,包括统计进化轨迹指数 (SETI)、自回归时滞回归 (AR(1)) 和隐马尔可夫模型 (HMM) 方法。我们使用三个真实数据集和模拟研究来演示这些动态方法在时间分析中的实用性。
Biomed Res Int. 2013-3-24
Brief Bioinform. 2019-1-18
Biometrics. 2012-3
Stat Appl Genet Mol Biol. 2016-4
Methods Mol Biol. 2018
BMC Bioinformatics. 2015-9-3
BMC Bioinformatics. 2017-5-23
Methods Mol Biol. 2021
Adv Nutr. 2023-11
Front Cell Dev Biol. 2021-10-14
BMC Bioinformatics. 2021-1-25
Sci Rep. 2019-1-24
J Vis Exp. 2017-8-10
BMC Bioinformatics. 2016-8-26
Comput Struct Biotechnol J. 2015-8-24
Genes (Basel). 2010-9-27
Brief Funct Genomics. 2011-12-30
Genome Res. 2011-9-8
Cancer Inform. 2011
BMC Genomics. 2011-6-6