Qi Xingqin, Li Guojun, Li Shuguang, Xu Ying
Department of Applied Mathematics, Shandong University at Weihai, Weihai 264213, China.
Comput Syst Bioinformatics Conf. 2006:157-66.
Given two signed multi-chromosomal genomes Pi and Gamma with the same gene set, the problem of sorting by translocations (SBT) is to find a shortest sequence of translocations transforming Pi to Gamma, where the length of the sequence is called the translocation distance between Pi and Gamma. In 1996, Hannenhalli gave the formula of the translocation distance for the first time, based on which an O(n3) algorithm for SBT was given. In 2005, Anne Bergeron et al. revisited this problem and gave an elementary proof for the formula of the translocation distance which leads to a new O(n3) algorithm for SBT. In this paper, we show how to extend Anne Bergeron's algorithm for SBT to include deletions, which allows us to compare genomes containing different genes. We present an asymptotically optimal algorithm for transforming Pi to Gamma by translocations and deletions, providing a feasible sequence with length at most OPT+2, where OPT is the minimum number of translocations and deletions transforming Pi to Gamma. Furthermore, this analysis can be used to approximate the minimum number of translocations and insertions transforming one genome to another.
给定两个具有相同基因集的带符号多染色体基因组Pi和Gamma,通过易位进行排序(SBT)的问题是找到将Pi转化为Gamma的最短易位序列,该序列的长度称为Pi和Gamma之间的易位距离。1996年,汉内哈里首次给出了易位距离的公式,并在此基础上给出了一种用于SBT的O(n3)算法。2005年,安妮·伯杰龙等人重新审视了这个问题,并给出了易位距离公式的一个基本证明,这导致了一种新的用于SBT的O(n3)算法。在本文中,我们展示了如何将安妮·伯杰龙的SBT算法扩展到包括缺失情况,这使我们能够比较包含不同基因的基因组。我们提出了一种通过易位和缺失将Pi转化为Gamma的渐近最优算法,提供了一个长度至多为OPT + 2的可行序列,其中OPT是将Pi转化为Gamma的最少易位和缺失次数。此外,这种分析可用于近似将一个基因组转化为另一个基因组所需的最少易位和插入次数。