Ozery-Flato Michal, Shamir Ron
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel.
J Comput Biol. 2007 May;14(4):408-22. doi: 10.1089/cmb.2007.A003.
The understanding of genome rearrangements is an important endeavor in comparative genomics. A major computational problem in this field is finding a shortest sequence of genome rearrangements that transforms, or sorts, one genome into another. In this paper we focus on sorting a multi-chromosomal genome by translocations. We reveal new relationships between this problem and the well studied problem of sorting by reversals. Based on these relationships, we develop two new algorithms for sorting by reciprocal translocations, which mimic known algorithms for sorting by reversals: a score-based method building on Bergeron's algorithm, and a recursive procedure similar to the Berman-Hannenhalli method. Though their proofs are more involved, our procedures for reciprocal translocations match the complexities of the original ones for reversals.
对基因组重排的理解是比较基因组学中的一项重要工作。该领域的一个主要计算问题是找到将一个基因组转化或排序为另一个基因组的最短基因组重排序列。在本文中,我们专注于通过易位对多染色体基因组进行排序。我们揭示了这个问题与经过充分研究的反转排序问题之间的新关系。基于这些关系,我们开发了两种用于通过相互易位进行排序的新算法,它们模仿了已知的反转排序算法:一种基于伯杰龙算法构建的基于分数的方法,以及一种类似于伯曼 - 汉内哈里方法的递归过程。尽管它们的证明更为复杂,但我们的相互易位过程与原始的反转排序过程具有相同的复杂度。