School of Applied Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, PR China.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Apr-Jun;7(2):365-74. doi: 10.1109/TCBB.2008.53.
The problem of sorting by reciprocal translocations (abbreviated as SBT) arises from the field of comparative genomics, which is to find a shortest sequence of reciprocal translocations that transforms one genome Pi into another genome Gamma, with the restriction that Pi and Gamma contain the same genes. SBT has been proved to be polynomial-time solvable, and several polynomial algorithms have been developed. In this paper, we show how to extend Bergeron's SBT algorithm to include insertions and deletions, allowing to compare genomes containing different genes. In particular, if the gene set of Pi is a subset (or superset, respectively) of the gene set of Gamma, we present an approximation algorithm for transforming Pi into Gamma by reciprocal translocations and deletions (insertions, respectively), providing a sorting sequence with length at most OPT + 2, where OPT is the minimum number of translocations and deletions (insertions, respectively) needed to transform Pi into Gamma; if Pi and Gamma have different genes but not containing each other, we give a heuristic to transform Pi into Gamma by a shortest sequence of reciprocal translocations, insertions, and deletions, with bounds for the length of the sorting sequence it outputs. At a conceptual level, there is some similarity between our algorithm and the algorithm developed by El Mabrouk which is used to sort two chromosomes with different gene contents by reversals, insertions, and deletions.
倒位重排排序(简称 SBT)的问题源于比较基因组学领域,其目的是找到将一个基因组 Pi 转换为另一个基因组 Gamma 的最短的倒位重排序列,同时限制 Pi 和 Gamma 包含相同的基因。已经证明 SBT 是多项式时间可解的,并且已经开发了几种多项式算法。在本文中,我们展示了如何扩展 Bergeron 的 SBT 算法以包括插入和缺失,从而能够比较包含不同基因的基因组。特别是,如果 Pi 的基因集是 Gamma 的基因集的子集(或超集,分别),我们提出了一种通过倒位重排和缺失(插入,分别)将 Pi 转换为 Gamma 的近似算法,提供了一个长度不超过 OPT + 2 的排序序列,其中 OPT 是将 Pi 转换为 Gamma 所需的最小交换和缺失(插入,分别)的数量;如果 Pi 和 Gamma 具有不同的基因但不包含彼此,则给出了一个通过最短的倒位重排、插入和缺失序列将 Pi 转换为 Gamma 的启发式方法,并给出了输出排序序列长度的界。在概念层面上,我们的算法与 El Mabrouk 开发的算法有一些相似之处,后者用于通过反转、插入和缺失对具有不同基因内容的两个染色体进行排序。