Ali Md Rejwan, Cheng Kwan Hon, Huang Juyang
Department of Physics, Texas Tech University, Lubbock, TX 79409, USA.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5372-7. doi: 10.1073/pnas.0611450104. Epub 2007 Mar 19.
Cholesterol plays a vital role in determining the physiochemical properties of cell membranes. However, the detailed nature of cholesterol-lipid interactions is a subject of ongoing debate. Existing conceptual models, including the Condensed Complex Model, the Superlattice Model, and the Umbrella Model, identify different molecular mechanisms as the key to cholesterol-lipid interactions. In this work, the compositional dependence of the chemical potential of cholesterol in cholesterol/phosphatidylcholine mixtures was systematically measured at high resolution at 37 degrees C by using an improved cholesterol oxidase (COD) activity assay. The chemical potential of cholesterol was found to be much higher in di18:1-PC bilayers than in di16:0-PC bilayers, indicating a more favorable interaction between cholesterol and saturated chains. More significantly, in 16:0,18:1-PC and di18:1-PC bilayers, the COD initial-reaction rate displays a series of distinct jumps near the cholesterol mole fractions (chi(C)) of 0.15, 0.25, 0.40, 0.50, and 0.57 and a peak at the cholesterol maximum solubility limit of 0.67. These jumps have been identified as the thermodynamic signatures of stable cholesterol regular distributions. In contrast, no such jumps were evident in di16:0-PC bilayers below chi(C) of 0.57. The observed chemical potential profile is in excellent agreement with previous Monte Carlo simulations based on the Umbrella Model but not with the predictions from the other models. The data further indicate that the cholesterol regular distribution domains (superlattices) are not the hypothesized condensed complexes. Those complexes were mainly implicated from studies on lipid monolayer that may not be relevant to the lipid bilayer in cell membranes.
胆固醇在决定细胞膜的物理化学性质方面起着至关重要的作用。然而,胆固醇与脂质相互作用的详细本质仍是一个持续争论的话题。现有的概念模型,包括凝聚复合物模型、超晶格模型和伞形模型,确定了不同的分子机制作为胆固醇与脂质相互作用的关键。在这项工作中,通过使用改进的胆固醇氧化酶(COD)活性测定法,在37摄氏度下以高分辨率系统地测量了胆固醇/磷脂酰胆碱混合物中胆固醇化学势的组成依赖性。发现胆固醇在二油酰磷脂酰胆碱(di18:1-PC)双层中的化学势远高于二棕榈酰磷脂酰胆碱(di16:0-PC)双层中的化学势,这表明胆固醇与饱和链之间的相互作用更有利。更重要的是,在1,2-二棕榈酰-1,2-二油酰磷脂酰胆碱(16:0,18:1-PC)和di18:1-PC双层中,COD初始反应速率在胆固醇摩尔分数(χ(C))为0.15、0.25、0.40、0.50和0.57附近显示出一系列明显的跃变,并在胆固醇最大溶解度极限0.67处出现一个峰值。这些跃变已被确定为稳定胆固醇规则分布的热力学特征。相比之下,在χ(C)低于0.57的di16:0-PC双层中没有明显的此类跃变。观察到的化学势分布与基于伞形模型的先前蒙特卡罗模拟结果非常吻合,但与其他模型的预测结果不符。数据进一步表明,胆固醇规则分布域(超晶格)不是假设的凝聚复合物。那些复合物主要来自对脂质单层的研究,而这可能与细胞膜中的脂质双层无关。