Suppr超能文献

氨基酸通过一种mTOR依赖性机制抑制阿黑皮素原(Agrp)基因的表达。

Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism.

作者信息

Morrison Christopher D, Xi Xiaochun, White Christy L, Ye Jianping, Martin Roy J

机构信息

Neurobehavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.

出版信息

Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E165-71. doi: 10.1152/ajpendo.00675.2006. Epub 2007 Mar 20.

Abstract

Metabolic fuels act on hypothalamic neurons to regulate feeding behavior and energy homeostasis, but the signaling mechanisms mediating these effects are not fully clear. Rats placed on a low-protein diet (10% of calories) exhibited increased food intake (P < 0.05) and hypothalamic Agouti-related protein (Agrp) gene expression (P = 0.002). Direct intracerebroventricular injection of either an amino acid mixture (RPMI 1640) or leucine alone (1 mug) suppressed 24-h food intake (P < 0.05), indicating that increasing amino acid concentrations within the brain is sufficient to suppress food intake. To define a cellular mechanism for these direct effects, GT1-7 hypothalamic cells were exposed to low amino acids for 16 h. Decreasing amino acid availability increased Agrp mRNA levels in GT1-7 cells (P < 0.01), and this effect was attenuated by replacement of the amino acid leucine (P < 0.05). Acute exposure to elevated amino acid concentrations increased ribosomal protein S6 kinase phosphorylation via a rapamycin-sensitive mechanism, suggesting that amino acids directly stimulated mammalian target of rapamycin (mTOR) signaling. To test whether mTOR signaling contributes to amino acid inhibition of Agrp gene expression, GT1-7 cells cultured in either low or high amino acids for 16 h and were also treated with rapamcyin (50 nM). Rapamycin treatment increased Agrp mRNA levels in cells exposed to high amino acids (P = 0.01). Taken together, these observations indicate that amino acids can act within the brain to inhibit food intake and that a direct, mTOR-dependent inhibition of Agrp gene expression may contribute to this effect.

摘要

代谢燃料作用于下丘脑神经元以调节进食行为和能量平衡,但其介导这些作用的信号机制尚不完全清楚。给大鼠喂食低蛋白饮食(热量的10%)会使其食物摄入量增加(P < 0.05),下丘脑刺鼠相关蛋白(Agrp)基因表达增加(P = 0.002)。直接脑室内注射氨基酸混合物(RPMI 1640)或单独注射亮氨酸(1微克)可抑制24小时食物摄入量(P < 0.05),这表明提高脑内氨基酸浓度足以抑制食物摄入。为了确定这些直接作用的细胞机制,将GT1-7下丘脑细胞暴露于低氨基酸环境中16小时。降低氨基酸可用性会增加GT1-7细胞中Agrp mRNA水平(P < 0.01),而这种作用会因补充氨基酸亮氨酸而减弱(P < 0.05)。急性暴露于升高的氨基酸浓度会通过一种雷帕霉素敏感机制增加核糖体蛋白S6激酶的磷酸化,这表明氨基酸直接刺激了雷帕霉素靶蛋白(mTOR)信号通路。为了测试mTOR信号通路是否有助于氨基酸对Agrp基因表达的抑制作用,将GT1-7细胞在低氨基酸或高氨基酸环境中培养16小时,并同时用雷帕霉素(50 nM)处理。雷帕霉素处理会增加暴露于高氨基酸环境中的细胞中Agrp mRNA水平(P = 0.01)。综上所述,这些观察结果表明氨基酸可在脑内发挥作用以抑制食物摄入,并且对Agrp基因表达的直接、mTOR依赖性抑制可能促成了这种作用。

相似文献

1
Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism.
Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E165-71. doi: 10.1152/ajpendo.00675.2006. Epub 2007 Mar 20.
2
Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes.
J Cell Biochem. 2000 Sep 7;79(3):427-41. doi: 10.1002/1097-4644(20001201)79:3<427::aid-jcb80>3.0.co;2-0.
3
Leptin inhibits hypothalamic Npy and Agrp gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling.
Am J Physiol Endocrinol Metab. 2005 Dec;289(6):E1051-7. doi: 10.1152/ajpendo.00094.2005. Epub 2005 Jul 26.
4
Neurochemical phenotype of hypothalamic neurons showing Fos expression 23 h after intracranial AgRP.
Am J Physiol Regul Integr Comp Physiol. 2002 Jun;282(6):R1773-81. doi: 10.1152/ajpregu.00019.2002.
5
Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism.
J Pathol. 2012 Jun;227(2):209-22. doi: 10.1002/path.3984. Epub 2012 Feb 17.
6
Evidence for the presence in rainbow trout brain of amino acid-sensing systems involved in the control of food intake.
Am J Physiol Regul Integr Comp Physiol. 2018 Feb 1;314(2):R201-R215. doi: 10.1152/ajpregu.00283.2017. Epub 2017 Oct 18.
7
A role for agouti-related protein in appetite regulation in a species with continuous nutrient delivery.
Neuroendocrinology. 2004;80(4):210-8. doi: 10.1159/000082735. Epub 2004 Dec 13.
8
Glucagon represses signaling through the mammalian target of rapamycin in rat liver by activating AMP-activated protein kinase.
J Biol Chem. 2004 Dec 24;279(52):54103-9. doi: 10.1074/jbc.M410755200. Epub 2004 Oct 19.
9
Effects of agouti-related protein on metabolism and hypothalamic neuropeptide gene expression.
J Neuroendocrinol. 2003 Dec;15(12):1116-21. doi: 10.1111/j.1365-2826.2003.01113.x.
10
The effect of metformin on food intake and its potential role in hypothalamic regulation in obese diabetic rats.
Brain Res. 2012 Mar 20;1444:11-9. doi: 10.1016/j.brainres.2012.01.028. Epub 2012 Jan 20.

引用本文的文献

1
Brain amino acid sensing for organismal amino acid homeostasis.
Open Biol. 2025 Aug;15(8):250092. doi: 10.1098/rsob.250092. Epub 2025 Aug 6.
2
Leucine deprivation results in antidepressant effects via GCN2 in AgRP neurons.
Life Metab. 2023 Feb 4;2(1):load004. doi: 10.1093/lifemeta/load004. eCollection 2023 Feb.
4
Protein appetite as an integrator in the obesity system: the protein leverage hypothesis.
Philos Trans R Soc Lond B Biol Sci. 2023 Oct 23;378(1888):20220212. doi: 10.1098/rstb.2022.0212. Epub 2023 Sep 4.
5
l-Type amino acid transporter 1 in hypothalamic neurons in mice maintains energy and bone homeostasis.
JCI Insight. 2023 Apr 10;8(7):e154925. doi: 10.1172/jci.insight.154925.
6
Agouti-related protein as the glucose signaling sensor in the central melanocortin circuits in regulating fish food intake.
Front Endocrinol (Lausanne). 2022 Nov 1;13:1010472. doi: 10.3389/fendo.2022.1010472. eCollection 2022.
7
Protein Appetite at the Interface between Nutrient Sensing and Physiological Homeostasis.
Nutrients. 2021 Nov 16;13(11):4103. doi: 10.3390/nu13114103.
8
Circadian Rhythms of the Hypothalamus: From Function to Physiology.
Clocks Sleep. 2021 Feb 25;3(1):189-226. doi: 10.3390/clockssleep3010012.
9
Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia.
J Cachexia Sarcopenia Muscle. 2020 Dec;11(6):1429-1446. doi: 10.1002/jcsm.12630. Epub 2020 Sep 28.
10
Metabolism Regulation and Redox State: Insight into the Role of Superoxide Dismutase 1.
Int J Mol Sci. 2020 Sep 10;21(18):6606. doi: 10.3390/ijms21186606.

本文引用的文献

1
Increased hypothalamic protein tyrosine phosphatase 1B contributes to leptin resistance with age.
Endocrinology. 2007 Jan;148(1):433-40. doi: 10.1210/en.2006-0672. Epub 2006 Oct 12.
2
Central nervous system control of food intake and body weight.
Nature. 2006 Sep 21;443(7109):289-95. doi: 10.1038/nature05026.
3
Critical role for peptide YY in protein-mediated satiation and body-weight regulation.
Cell Metab. 2006 Sep;4(3):223-33. doi: 10.1016/j.cmet.2006.08.001.
4
Hypothalamic mTOR signaling regulates food intake.
Science. 2006 May 12;312(5775):927-30. doi: 10.1126/science.1124147.
5
Nutritional homeostasis and indispensable amino acid sensing: a new solution to an old puzzle.
Trends Neurosci. 2006 Feb;29(2):91-9. doi: 10.1016/j.tins.2005.12.007. Epub 2006 Jan 10.
6
Potential importance of leucine in treatment of obesity and the metabolic syndrome.
J Nutr. 2006 Jan;136(1 Suppl):319S-23S. doi: 10.1093/jn/136.1.319S.
8
10
Fatty acid metabolism as a target for obesity treatment.
Physiol Behav. 2005 May 19;85(1):25-35. doi: 10.1016/j.physbeh.2005.04.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验