Suppr超能文献

由指向和扫视激活的顶叶和额上叶视觉空间图谱。

Parietal and superior frontal visuospatial maps activated by pointing and saccades.

作者信息

Hagler D J, Riecke L, Sereno M I

机构信息

Department of Cognitive Science, University of California, San Diego, 9500 Gilman Dr. #0515, La Jolla, CA 92093-0515, USA.

出版信息

Neuroimage. 2007 May 1;35(4):1562-77. doi: 10.1016/j.neuroimage.2007.01.033. Epub 2007 Feb 8.

Abstract

A recent study from our laboratory demonstrated that parietal cortex contains a map of visual space related to saccades and spatial attention and identified this area as the likely human homologue of the lateral intraparietal (LIP). A human homologue for the parietal reach region (PRR), thought to preferentially encode planned hand movements, has also been recently proposed. Both of these areas, originally identified in the macaque monkey, have been shown to encode space with eye-centered coordinates. Functional magnetic resonance imaging (fMRI) of humans was used to test the hypothesis that the putative human PRR contains a retinotopic map recruited by finger pointing but not saccades and to test more generally for differences in the visuospatial maps recruited by pointing and saccades. We identified multiple maps in both posterior parietal cortex and superior frontal cortex recruited for eye and hand movements, including maps not observed in previous mapping studies. Pointing and saccade maps were generally consistent within single subjects. We have developed new group analysis methods for phase-encoded data, which revealed subtle differences between pointing and saccades, including hemispheric asymmetries, but we did not find evidence of pointing-specific maps of visual space.

摘要

我们实验室最近的一项研究表明,顶叶皮层包含一个与扫视和空间注意力相关的视觉空间图谱,并将该区域确定为外侧顶内叶(LIP)可能的人类同源物。最近还提出了顶叶伸手区域(PRR)的人类同源物,该区域被认为优先编码计划中的手部动作。这两个区域最初是在猕猴中发现的,已被证明以眼为中心的坐标编码空间。利用人类功能性磁共振成像(fMRI)来检验以下假设:假定的人类PRR包含一个由手指指向而非扫视所募集的视网膜拓扑图谱,并更广泛地检验由指向和扫视所募集的视觉空间图谱之间的差异。我们在顶叶后皮质和额上皮质中识别出多个为眼动和手动所募集的图谱,包括在以往图谱研究中未观察到的图谱。在单个受试者中,指向和扫视图谱总体上是一致的。我们已经为相位编码数据开发了新的组分析方法,这些方法揭示了指向和扫视之间的细微差异,包括半球不对称性,但我们没有找到视觉空间中指向特异性图谱的证据。

相似文献

1
Parietal and superior frontal visuospatial maps activated by pointing and saccades.
Neuroimage. 2007 May 1;35(4):1562-77. doi: 10.1016/j.neuroimage.2007.01.033. Epub 2007 Feb 8.
2
A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing.
J Neurophysiol. 2000 Sep;84(3):1645-55. doi: 10.1152/jn.2000.84.3.1645.
3
Differential parietal activations for spatial remapping and saccadic control in a visual memory task.
Neuropsychologia. 2019 Aug;131:129-138. doi: 10.1016/j.neuropsychologia.2019.05.010. Epub 2019 May 16.
4
Effector general representation of movement goals in human frontal and parietal cortex.
Neuroimage. 2025 Apr 15;310:121124. doi: 10.1016/j.neuroimage.2025.121124. Epub 2025 Mar 5.
5
Eye position signal modulates a human parietal pointing region during memory-guided movements.
J Neurosci. 2000 Aug 1;20(15):5835-40. doi: 10.1523/JNEUROSCI.20-15-05835.2000.
6
FMRI evidence for a 'parietal reach region' in the human brain.
Exp Brain Res. 2003 Nov;153(2):140-5. doi: 10.1007/s00221-003-1587-1. Epub 2003 Sep 4.
8
Parietal Cortex Integrates Saccade and Object Orientation Signals to Update Grasp Plans.
J Neurosci. 2020 Jun 3;40(23):4525-4535. doi: 10.1523/JNEUROSCI.0300-20.2020. Epub 2020 Apr 30.
9
Gaze-centered updating of visual space in human parietal cortex.
J Neurosci. 2003 Jul 16;23(15):6209-14. doi: 10.1523/JNEUROSCI.23-15-06209.2003.
10
Auditory Spatial Coding Flexibly Recruits Anterior, but Not Posterior, Visuotopic Parietal Cortex.
Cereb Cortex. 2016 Mar;26(3):1302-1308. doi: 10.1093/cercor/bhv303. Epub 2015 Dec 11.

引用本文的文献

1
From observation to cognition: The impact of watching actions on child thought processes.
Psychol Res. 2025 Jun 13;89(3):111. doi: 10.1007/s00426-025-02129-w.
2
Saccades influence functional modularity in the human cortical vision network.
Sci Rep. 2025 Mar 28;15(1):10683. doi: 10.1038/s41598-025-95568-9.
3
Effector general representation of movement goals in human frontal and parietal cortex.
Neuroimage. 2025 Apr 15;310:121124. doi: 10.1016/j.neuroimage.2025.121124. Epub 2025 Mar 5.
4
Decision-making processes in perceptual learning depend on effectors.
Sci Rep. 2024 Mar 7;14(1):5644. doi: 10.1038/s41598-024-55508-5.
5
Cortical field maps across human sensory cortex.
Front Comput Neurosci. 2023 Dec 15;17:1232005. doi: 10.3389/fncom.2023.1232005. eCollection 2023.
6
Egomotion-related visual areas respond to goal-directed movements.
Brain Struct Funct. 2022 Sep;227(7):2313-2328. doi: 10.1007/s00429-022-02523-9. Epub 2022 Jun 28.
7
Topological Maps and Brain Computations From Low to High.
Front Syst Neurosci. 2022 May 27;16:787737. doi: 10.3389/fnsys.2022.787737. eCollection 2022.
9
Motor-related signals support localization invariance for stable visual perception.
PLoS Comput Biol. 2022 Mar 14;18(3):e1009928. doi: 10.1371/journal.pcbi.1009928. eCollection 2022 Mar.
10
Errors in visuospatial working memory across space and time.
Sci Rep. 2021 Jul 14;11(1):14449. doi: 10.1038/s41598-021-93858-6.

本文引用的文献

1
A unified statistical approach for determining significant signals in images of cerebral activation.
Hum Brain Mapp. 1996;4(1):58-73. doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O.
2
Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data.
Neuroimage. 2006 Dec;33(4):1093-103. doi: 10.1016/j.neuroimage.2006.07.036. Epub 2006 Oct 2.
3
Spatial maps in frontal and prefrontal cortex.
Neuroimage. 2006 Jan 15;29(2):567-77. doi: 10.1016/j.neuroimage.2005.08.058. Epub 2005 Nov 11.
4
Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics.
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):709-31. doi: 10.1098/rstb.2005.1629.
5
Topographic organization for delayed saccades in human posterior parietal cortex.
J Neurophysiol. 2005 Aug;94(2):1372-84. doi: 10.1152/jn.01290.2004. Epub 2005 Apr 7.
6
Topographic maps of visual spatial attention in human parietal cortex.
J Neurophysiol. 2005 Aug;94(2):1358-71. doi: 10.1152/jn.01316.2004. Epub 2005 Apr 7.
7
Human medial intraparietal cortex subserves visuomotor coordinate transformation.
Neuroimage. 2004 Dec;23(4):1494-506. doi: 10.1016/j.neuroimage.2004.08.031.
8
Integration of target and effector information in human posterior parietal cortex for the planning of action.
J Neurophysiol. 2005 Feb;93(2):954-62. doi: 10.1152/jn.00725.2004. Epub 2004 Sep 8.
9
Spatial transformations for eye-hand coordination.
J Neurophysiol. 2004 Jul;92(1):10-9. doi: 10.1152/jn.00117.2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验