Centre for Vision Research, York University, Toronto, Ontario M3J 1P3, Canada
Vision, Science to Applications Program, York University, Toronto, Ontario M3J 1P3, Canada.
J Neurosci. 2020 Jun 3;40(23):4525-4535. doi: 10.1523/JNEUROSCI.0300-20.2020. Epub 2020 Apr 30.
Coordinated reach-to-grasp movements are often accompanied by rapid eye movements (saccades) that displace the desired object image relative to the retina. Parietal cortex compensates for this by updating reach goals relative to current gaze direction, but its role in the integration of oculomotor and visual orientation signals for updating grasp plans is unknown. Based on a recent perceptual experiment, we hypothesized that inferior parietal cortex (specifically supramarginal gyrus [SMG]) integrates saccade and visual signals to update grasp plans in additional intraparietal/superior parietal regions. To test this hypothesis in humans (7 females, 6 males), we used a functional magnetic resonance paradigm, where saccades sometimes interrupted grasp preparation toward a briefly presented object that later reappeared (with the same/different orientation) just before movement. Right SMG and several parietal grasp regions, namely, left anterior intraparietal sulcus and bilateral superior parietal lobule, met our criteria for transsaccadic orientation integration: they showed task-dependent saccade modulations and, during grasp execution, they were specifically sensitive to changes in object orientation that followed saccades. Finally, SMG showed enhanced functional connectivity with both prefrontal saccade regions (consistent with oculomotor input) and anterior intraparietal sulcus/superior parietal lobule (consistent with sensorimotor output). These results support the general role of parietal cortex for the integration of visuospatial perturbations, and provide specific cortical modules for the integration of oculomotor and visual signals for grasp updating. How does the brain simultaneously compensate for both external and internally driven changes in visual input? For example, how do we grasp an unstable object while eye movements are simultaneously changing its retinal location? Here, we used fMRI to identify a group of inferior parietal (supramarginal gyrus) and superior parietal (intraparietal and superior parietal) regions that show saccade-specific modulations during unexpected changes in object/grasp orientation, and functional connectivity with frontal cortex saccade centers. This provides a network, complementary to the reach goal updater, that integrates visuospatial updating into grasp plans, and may help to explain some of the more complex symptoms associated with parietal damage, such as constructional ataxia.
协调的伸手抓握动作通常伴随着快速眼球运动(扫视),使目标物体的图像相对于视网膜发生位移。顶叶皮层通过相对于当前注视方向更新伸手目标来对此进行补偿,但它在整合眼动和视觉方向信号以更新抓握计划方面的作用尚不清楚。基于最近的一个感知实验,我们假设下顶叶皮层(特别是缘上回 [SMG])整合扫视和视觉信号,以在额外的顶内/上顶区域更新抓握计划。为了在人类(7 名女性,6 名男性)中验证这一假设,我们使用了功能磁共振成像范式,在该范式中,扫视有时会中断对短暂呈现的目标物体的抓握准备,而该物体稍后会在运动前再次出现(具有相同/不同的方向)。右 SMG 和几个顶叶抓握区域,即左前顶内沟和双侧上顶叶,符合我们的跨扫视方向整合标准:它们表现出任务依赖的扫视调制,并且在抓握执行期间,它们对紧随扫视的目标物体方向变化特别敏感。最后,SMG 与前额叶扫视区域(与眼动输入一致)和前顶内沟/上顶叶(与感觉运动输出一致)的功能连接增强。这些结果支持顶叶皮层对视觉空间干扰整合的一般作用,并为眼动和视觉信号的整合提供了特定的皮层模块,以实现抓握更新。大脑如何同时补偿视觉输入的外部和内部驱动变化?例如,当眼睛运动同时改变目标的视网膜位置时,我们如何抓住一个不稳定的物体?在这里,我们使用 fMRI 来识别一组下顶叶(缘上回)和上顶叶(顶内和上顶叶)区域,这些区域在目标/抓握方向的意外变化期间表现出扫视特异性调制,并与额叶皮层扫视中心具有功能连接。这提供了一个网络,与伸手目标更新器互补,将视觉空间更新整合到抓握计划中,并且可能有助于解释与顶叶损伤相关的一些更复杂的症状,例如结构性共济失调。