Suppr超能文献

基于皮层表面的功能磁共振成像数据组分析的平滑和聚类阈值处理

Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data.

作者信息

Hagler Donald J, Saygin Ayse Pinar, Sereno Martin I

机构信息

University of California, San Diego, Department of Cognitive Science, 9500 Gilman Drive #0515, La Jolla, CA 92093-0515, USA.

出版信息

Neuroimage. 2006 Dec;33(4):1093-103. doi: 10.1016/j.neuroimage.2006.07.036. Epub 2006 Oct 2.

Abstract

Cortical surface-based analysis of fMRI data has proven to be a useful method with several advantages over 3-dimensional volumetric analyses. Many of the statistical methods used in 3D analyses can be adapted for use with surface-based analyses. Operating within the framework of the FreeSurfer software package, we have implemented a surface-based version of the cluster size exclusion method used for multiple comparisons correction. Furthermore, we have a developed a new method for generating regions of interest on the cortical surface using a sliding threshold of cluster exclusion followed by cluster growth. Cluster size limits for multiple probability thresholds were estimated using random field theory and validated with Monte Carlo simulation. A prerequisite of RFT or cluster size simulation is an estimate of the smoothness of the data. In order to estimate the intrinsic smoothness of group analysis statistics, independent of true activations, we conducted a group analysis of simulated noise data sets. Because smoothing on a cortical surface mesh is typically implemented using an iterative method, rather than directly applying a Gaussian blurring kernel, it is also necessary to determine the width of the equivalent Gaussian blurring kernel as a function of smoothing steps. Iterative smoothing has previously been modeled as continuous heat diffusion, providing a theoretical basis for predicting the equivalent kernel width, but the predictions of the model were not empirically tested. We generated an empirical heat diffusion kernel width function by performing surface-based smoothing simulations and found a large disparity between the expected and actual kernel widths.

摘要

基于皮层表面的功能磁共振成像(fMRI)数据分析已被证明是一种有用的方法,与三维体积分析相比具有多个优势。许多用于三维分析的统计方法都可适用于基于表面的分析。在FreeSurfer软件包的框架内,我们实现了一种基于表面的聚类大小排除方法,用于多重比较校正。此外,我们还开发了一种新方法,通过使用聚类排除的滑动阈值然后进行聚类增长,在皮层表面生成感兴趣区域。使用随机场理论估计了多个概率阈值的聚类大小限制,并通过蒙特卡罗模拟进行了验证。随机场理论(RFT)或聚类大小模拟的一个前提是估计数据的平滑度。为了估计组分析统计量的内在平滑度,而不依赖于真实激活,我们对模拟噪声数据集进行了组分析。由于在皮层表面网格上的平滑通常使用迭代方法实现,而不是直接应用高斯模糊核,因此还需要确定等效高斯模糊核的宽度作为平滑步骤的函数。迭代平滑以前被建模为连续热扩散,为预测等效核宽度提供了理论基础,但该模型的预测未经实证检验。我们通过进行基于表面的平滑模拟生成了一个经验热扩散核宽度函数,发现预期核宽度与实际核宽度之间存在很大差异。

相似文献

1
Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data.
Neuroimage. 2006 Dec;33(4):1093-103. doi: 10.1016/j.neuroimage.2006.07.036. Epub 2006 Oct 2.
2
Cortical thickness analysis in autism with heat kernel smoothing.
Neuroimage. 2005 May 1;25(4):1256-65. doi: 10.1016/j.neuroimage.2004.12.052.
3
A high performance 3D cluster-based test of unsmoothed fMRI data.
Neuroimage. 2014 Sep;98:537-46. doi: 10.1016/j.neuroimage.2014.05.015. Epub 2014 May 13.
4
Spatial accuracy of fMRI activation influenced by volume- and surface-based spatial smoothing techniques.
Neuroimage. 2007 Jan 15;34(2):550-64. doi: 10.1016/j.neuroimage.2006.09.047. Epub 2006 Nov 15.
5
Artificial shifting of fMRI activation localized by volume- and surface-based analyses.
Neuroimage. 2008 Apr 15;40(3):1077-89. doi: 10.1016/j.neuroimage.2007.12.036. Epub 2008 Jan 3.
6
Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.
Magn Reson Imaging. 2018 Jun;49:101-115. doi: 10.1016/j.mri.2018.01.004. Epub 2018 Feb 3.
7
A voxelation-corrected non-stationary 3D cluster-size test based on random field theory.
Neuroimage. 2015 Sep;118:676-82. doi: 10.1016/j.neuroimage.2015.05.094. Epub 2015 Jun 9.
8
Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing.
IEEE Trans Med Imaging. 2004 Mar;23(3):374-87. doi: 10.1109/TMI.2004.824234.
10
Deformation-based surface morphometry applied to gray matter deformation.
Neuroimage. 2003 Feb;18(2):198-213. doi: 10.1016/s1053-8119(02)00017-4.

引用本文的文献

2
Structural and functional neural correlates of sensorimotor deficits in progression of hepatic encephalopathy.
Magn Reson Lett. 2024 Oct 20;5(2):200156. doi: 10.1016/j.mrl.2024.200156. eCollection 2025 May.
4
Short association fibres form topographic sheets in the human V1-V2 processing stream.
Imaging Neurosci (Camb). 2025 Mar 10;3. doi: 10.1162/imag_a_00498. eCollection 2025.
5
High-resolution 7T fMRI reveals the visual zone of the human claustrum.
Imaging Neurosci (Camb). 2024 Oct 24;2. doi: 10.1162/imag_a_00327. eCollection 2024.
6
Layer-specific changes in sensory cortex across the lifespan in mice and humans.
Nat Neurosci. 2025 Aug 11. doi: 10.1038/s41593-025-02013-1.
7
Sex Differences in Cortical Structural Alterations in Major Depressive Disorder With Suicidal Ideation.
Depress Anxiety. 2025 Jul 2;2025:1706750. doi: 10.1155/da/1706750. eCollection 2025.
9
Replicability of a resting-state functional connectivity study in profound early blindness.
Front Syst Neurosci. 2025 Apr 28;19:1547276. doi: 10.3389/fnsys.2025.1547276. eCollection 2025.

本文引用的文献

1
Assessing the significance of focal activations using their spatial extent.
Hum Brain Mapp. 1994;1(3):210-20. doi: 10.1002/hbm.460010306.
3
A unified statistical approach for determining significant signals in images of cerebral activation.
Hum Brain Mapp. 1996;4(1):58-73. doi: 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O.
4
Spatial maps in frontal and prefrontal cortex.
Neuroimage. 2006 Jan 15;29(2):567-77. doi: 10.1016/j.neuroimage.2005.08.058. Epub 2005 Nov 11.
5
Cortical thickness analysis in autism with heat kernel smoothing.
Neuroimage. 2005 May 1;25(4):1256-65. doi: 10.1016/j.neuroimage.2004.12.052.
6
Cortex-based independent component analysis of fMRI time series.
Magn Reson Imaging. 2004 Dec;22(10):1493-504. doi: 10.1016/j.mri.2004.10.020.
7
Combining voxel intensity and cluster extent with permutation test framework.
Neuroimage. 2004 Sep;23(1):54-63. doi: 10.1016/j.neuroimage.2004.04.035.
8
Nonstationary cluster-size inference with random field and permutation methods.
Neuroimage. 2004 Jun;22(2):676-87. doi: 10.1016/j.neuroimage.2004.01.041.
9
Validating cluster size inference: random field and permutation methods.
Neuroimage. 2003 Dec;20(4):2343-56. doi: 10.1016/j.neuroimage.2003.08.003.
10
Deformation-based surface morphometry applied to gray matter deformation.
Neuroimage. 2003 Feb;18(2):198-213. doi: 10.1016/s1053-8119(02)00017-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验