Hagler Donald J, Saygin Ayse Pinar, Sereno Martin I
University of California, San Diego, Department of Cognitive Science, 9500 Gilman Drive #0515, La Jolla, CA 92093-0515, USA.
Neuroimage. 2006 Dec;33(4):1093-103. doi: 10.1016/j.neuroimage.2006.07.036. Epub 2006 Oct 2.
Cortical surface-based analysis of fMRI data has proven to be a useful method with several advantages over 3-dimensional volumetric analyses. Many of the statistical methods used in 3D analyses can be adapted for use with surface-based analyses. Operating within the framework of the FreeSurfer software package, we have implemented a surface-based version of the cluster size exclusion method used for multiple comparisons correction. Furthermore, we have a developed a new method for generating regions of interest on the cortical surface using a sliding threshold of cluster exclusion followed by cluster growth. Cluster size limits for multiple probability thresholds were estimated using random field theory and validated with Monte Carlo simulation. A prerequisite of RFT or cluster size simulation is an estimate of the smoothness of the data. In order to estimate the intrinsic smoothness of group analysis statistics, independent of true activations, we conducted a group analysis of simulated noise data sets. Because smoothing on a cortical surface mesh is typically implemented using an iterative method, rather than directly applying a Gaussian blurring kernel, it is also necessary to determine the width of the equivalent Gaussian blurring kernel as a function of smoothing steps. Iterative smoothing has previously been modeled as continuous heat diffusion, providing a theoretical basis for predicting the equivalent kernel width, but the predictions of the model were not empirically tested. We generated an empirical heat diffusion kernel width function by performing surface-based smoothing simulations and found a large disparity between the expected and actual kernel widths.
基于皮层表面的功能磁共振成像(fMRI)数据分析已被证明是一种有用的方法,与三维体积分析相比具有多个优势。许多用于三维分析的统计方法都可适用于基于表面的分析。在FreeSurfer软件包的框架内,我们实现了一种基于表面的聚类大小排除方法,用于多重比较校正。此外,我们还开发了一种新方法,通过使用聚类排除的滑动阈值然后进行聚类增长,在皮层表面生成感兴趣区域。使用随机场理论估计了多个概率阈值的聚类大小限制,并通过蒙特卡罗模拟进行了验证。随机场理论(RFT)或聚类大小模拟的一个前提是估计数据的平滑度。为了估计组分析统计量的内在平滑度,而不依赖于真实激活,我们对模拟噪声数据集进行了组分析。由于在皮层表面网格上的平滑通常使用迭代方法实现,而不是直接应用高斯模糊核,因此还需要确定等效高斯模糊核的宽度作为平滑步骤的函数。迭代平滑以前被建模为连续热扩散,为预测等效核宽度提供了理论基础,但该模型的预测未经实证检验。我们通过进行基于表面的平滑模拟生成了一个经验热扩散核宽度函数,发现预期核宽度与实际核宽度之间存在很大差异。