Dubois Albertine, Dauguet Julien, Herard Anne-Sophie, Besret Laurent, Duchesnay Edouard, Frouin Vincent, Hantraye Philippe, Bonvento Gilles, Delzescaux Thierry
UIIBP, Service Hospitalier Frederic Joliot, CEA, Orsay, France.
J Cereb Blood Flow Metab. 2007 Oct;27(10):1742-55. doi: 10.1038/sj.jcbfm.9600470. Epub 2007 Mar 21.
Besides the newly developed positron emission tomography scanners (microPET) dedicated to the in vivo functional study of small animals, autoradiography remains the reference technique widely used for functional brain imaging and the gold standard for the validation of in vivo results. The analysis of autoradiographic data is classically achieved in two dimensions (2D) using a section-by-section approach, is often limited to few sections and the delineation of the regions of interest to be analysed is directly performed on autoradiographic sections. In addition, such approach of analysis does not accommodate the possible anatomical shifts linked to dissymmetry associated with the sectioning process. This classic analysis is time-consuming, operator-dependent and can therefore lead to non-objective and non-reproducible results. In this paper, we have developed an automated and generic toolbox for processing of autoradiographic and corresponding histological rat brain sections based on a three-step approach, which involves: (1) an optimized digitization dealing with hundreds of autoradiographic and histological sections; (2) a robust reconstruction of the volumes based on a reliable registration method; and (3) an original 3D-geometry-based approach to analysis of anatomical and functional post-mortem data. The integration of the toolbox under a unified environment (in-house software BrainVISA, http://brainvisa.info) with a graphic interface enabled a robust and operator-independent exploitation of the overall anatomical and functional information. We illustrated the substantial qualitative and quantitative benefits obtained by applying our methodology to an activation study (rats, n=5, under unilateral visual stimulation).
除了新开发的用于小动物体内功能研究的正电子发射断层扫描仪(微型PET)外,放射自显影术仍然是广泛用于功能性脑成像的参考技术,也是验证体内研究结果的金标准。放射自显影数据的分析传统上是在二维(2D)中使用逐节分析方法进行的,通常限于少数几节,并且要分析的感兴趣区域的描绘直接在放射自显影片上进行。此外,这种分析方法无法适应与切片过程相关的不对称性所导致的可能的解剖学移位。这种传统分析耗时、依赖操作者,因此可能导致非客观和不可重复的结果。在本文中,我们基于三步法开发了一种用于处理放射自显影和相应组织学大鼠脑切片的自动化通用工具箱,该方法包括:(1)对数百张放射自显影和组织学切片进行优化数字化处理;(2)基于可靠配准方法对体积进行稳健重建;(3)一种基于原始3D几何的方法来分析解剖学和死后功能数据。该工具箱在具有图形界面的统一环境(内部软件BrainVISA,http://brainvisa.info)下的集成,使得能够对整体解剖学和功能信息进行稳健且独立于操作者的利用。我们展示了将我们的方法应用于一项激活研究(大鼠,n = 5,单侧视觉刺激下)所获得的显著定性和定量益处。