Suppr超能文献

通过在隐式曲面上求解偏微分方程进行直接皮质映射。

Direct cortical mapping via solving partial differential equations on implicit surfaces.

作者信息

Shi Yonggang, Thompson Paul M, Dinov Ivo, Osher Stanley, Toga Arthur W

机构信息

Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA.

出版信息

Med Image Anal. 2007 Jun;11(3):207-23. doi: 10.1016/j.media.2007.02.001. Epub 2007 Feb 16.

Abstract

In this paper, we propose a novel approach for cortical mapping that computes a direct map between two cortical surfaces while satisfying constraints on sulcal landmark curves. By computing the map directly, we can avoid conventional intermediate parameterizations and help simplify the cortical mapping process. The direct map in our method is formulated as the minimizer of a flexible variational energy under landmark constraints. The energy can include both a harmonic term to ensure smoothness of the map and general data terms for the matching of geometric features. Starting from a properly designed initial map, we compute the map iteratively by solving a partial differential equation (PDE) defined on the source cortical surface. For numerical implementation, a set of adaptive numerical schemes are developed to extend the technique of solving PDEs on implicit surfaces such that landmark constraints are enforced. In our experiments, we show the flexibility of the direct mapping approach by computing smooth maps following landmark constraints from two different energies. We also quantitatively compare the metric preserving property of the direct mapping method with a parametric mapping method on a group of 30 subjects. Finally, we demonstrate the direct mapping method in the brain mapping applications of atlas construction and variability analysis.

摘要

在本文中,我们提出了一种用于皮质映射的新方法,该方法可在满足脑沟地标曲线约束的同时,计算两个皮质表面之间的直接映射。通过直接计算映射,我们可以避免传统的中间参数化,并有助于简化皮质映射过程。我们方法中的直接映射被表述为在地标约束下灵活变分能量的极小值。该能量既可以包括确保映射平滑性的调和项,也可以包括用于匹配几何特征的一般数据项。从精心设计的初始映射开始,我们通过求解在源皮质表面上定义的偏微分方程(PDE)来迭代计算映射。为了进行数值实现,开发了一组自适应数值方案,以扩展在隐式曲面上求解PDE的技术,从而强制实施地标约束。在我们的实验中,我们通过根据两种不同能量的地标约束计算平滑映射,展示了直接映射方法的灵活性。我们还在一组30名受试者上,定量比较了直接映射方法与参数映射方法的度量保持特性。最后,我们在图谱构建和变异性分析的脑图谱应用中展示了直接映射方法。

相似文献

1
Direct cortical mapping via solving partial differential equations on implicit surfaces.
Med Image Anal. 2007 Jun;11(3):207-23. doi: 10.1016/j.media.2007.02.001. Epub 2007 Feb 16.
2
Implicit brain imaging.
Neuroimage. 2004;23 Suppl 1:S179-88. doi: 10.1016/j.neuroimage.2004.07.072.
3
Direct mapping of hippocampal surfaces with intrinsic shape context.
Neuroimage. 2007 Sep 1;37(3):792-807. doi: 10.1016/j.neuroimage.2007.05.016. Epub 2007 May 23.
4
Metric optimization for surface analysis in the Laplace-Beltrami embedding space.
IEEE Trans Med Imaging. 2014 Jul;33(7):1447-63. doi: 10.1109/TMI.2014.2313812. Epub 2014 Mar 25.
5
Consistent sulcal parcellation of longitudinal cortical surfaces.
Neuroimage. 2011 Jul 1;57(1):76-88. doi: 10.1016/j.neuroimage.2011.03.064. Epub 2011 Apr 5.
6
Automatic sulcal line extraction on cortical surfaces using geodesic path density maps.
Neuroimage. 2012 Jul 16;61(4):941-9. doi: 10.1016/j.neuroimage.2012.04.021. Epub 2012 Apr 14.
7
Mapping techniques for aligning sulci across multiple brains.
Med Image Anal. 2004 Sep;8(3):295-309. doi: 10.1016/j.media.2004.06.020.
8
Optimized conformal parameterization of cortical surfaces using shape based matching of landmark curves.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):494-501. doi: 10.1007/978-3-540-85988-8_59.
9
Registration of cortical surfaces using sulcal landmarks for group analysis of MEG data.
Int Congr Ser. 2007 Jun 1;1300:229-232. doi: 10.1016/j.ics.2006.12.052.
10
Brain surface conformal parameterization using Riemann surface structure.
IEEE Trans Med Imaging. 2007 Jun;26(6):853-65. doi: 10.1109/TMI.2007.895464.

引用本文的文献

1
Methodological challenges and analytic opportunities for modeling and interpreting Big Healthcare Data.
Gigascience. 2016 Feb 25;5:12. doi: 10.1186/s13742-016-0117-6. eCollection 2016.
2
MarsAtlas: A cortical parcellation atlas for functional mapping.
Hum Brain Mapp. 2016 Apr;37(4):1573-92. doi: 10.1002/hbm.23121. Epub 2016 Jan 27.
4
Automatic segmentation of neonatal images using convex optimization and coupled level sets.
Neuroimage. 2011 Oct 1;58(3):805-17. doi: 10.1016/j.neuroimage.2011.06.064. Epub 2011 Jul 5.
5
A Computational Model of Multidimensional Shape.
Int J Comput Vis. 2010 Aug 1;89(1):69-83. doi: 10.1007/s11263-010-0323-0.
6
A new method to measure cortical growth in the developing brain.
J Biomech Eng. 2010 Oct;132(10):101004. doi: 10.1115/1.4002430.
7
Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS.
Neuroimage. 2010 Feb 1;49(3):2141-57. doi: 10.1016/j.neuroimage.2009.10.086. Epub 2009 Nov 6.
8
Pattern of hippocampal shape and volume differences in blind subjects.
Neuroimage. 2009 Jul 15;46(4):949-57. doi: 10.1016/j.neuroimage.2009.01.071. Epub 2009 Mar 12.
9
Joint sulcal detection on cortical surfaces with graphical models and boosted priors.
IEEE Trans Med Imaging. 2009 Mar;28(3):361-73. doi: 10.1109/TMI.2008.2004402.
10
Harmonic surface mapping with Laplace-Beltrami eigenmaps.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):147-54. doi: 10.1007/978-3-540-85990-1_18.

本文引用的文献

1
CORTICAL SURFACE PARAMETERIZATION BY P-HARMONIC ENERGY MINIMIZATION.
Proc IEEE Int Symp Biomed Imaging. 2004 Apr 1;1:428-431. doi: 10.1109/ISBI.2004.1398566.
2
Deformable templates using large deformation kinematics.
IEEE Trans Image Process. 1996;5(10):1435-47. doi: 10.1109/83.536892.
3
Landmark matching via large deformation diffeomorphisms.
IEEE Trans Image Process. 2000;9(8):1357-70. doi: 10.1109/83.855431.
4
A surface-based technique for warping three-dimensional images of the brain.
IEEE Trans Med Imaging. 1996;15(4):402-17. doi: 10.1109/42.511745.
5
Cortical surface alignment using geometry driven multispectral optical flow.
Inf Process Med Imaging. 2005;19:480-92. doi: 10.1007/11505730_40.
6
Optimization of brain conformal mapping with landmarks.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):675-83. doi: 10.1007/11566489_83.
7
Automated surface matching using mutual information applied to Riemann surface structures.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):666-74. doi: 10.1007/11566489_82.
8
Anatomically constrained surface parameterization for cortical localization.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):344-51. doi: 10.1007/11566489_43.
9
A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex.
Neuroimage. 2005 Nov 15;28(3):635-62. doi: 10.1016/j.neuroimage.2005.06.058. Epub 2005 Sep 19.
10
Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method.
Neuroimage. 2005 Feb 1;24(3):910-27. doi: 10.1016/j.neuroimage.2004.09.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验