Bakos Tamas, Valipa Mayur S, Maroudas Dimitrios
Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-3110, USA.
J Chem Phys. 2007 Mar 21;126(11):114704. doi: 10.1063/1.2672799.
We present a detailed analysis of the interactions between growth precursors, SiH3 radicals, on surfaces of silicon thin films. The analysis is based on a synergistic combination of density functional theory calculations on the hydrogen-terminated Si(001)-(2x1) surface and molecular-dynamics (MD) simulations of film growth on surfaces of MD-generated hydrogenated amorphous silicon (a-Si:H) thin films. In particular, the authors find that two interacting growth precursors may either form disilane (Si2H6) and desorb from the surface, or disproportionate, resulting in the formation of a surface dihydride (adsorbed SiH2 species) and gas-phase silane (SiH4). The reaction barrier for disilane formation is found to be strongly dependent on the local chemical environment on the silicon surface and reduces (or vanishes) if one/both of the interacting precursors is/are in a "fast diffusing state," i.e., attached to fivefold coordinated surface Si atoms. Finally, activation energy barriers in excess of 1 eV are obtained for two chemisorbed (i.e., bonded to a fourfold coordinated surface Si atom) SiH3 radicals. Activation energy barriers for disproportionation follow the same tendency, though, in most cases, higher barriers are obtained compared to disilane formation reactions starting from the same initial configuration. MD simulations confirm that disilane formation and disproportionation reactions also occur on a-Si:H growth surfaces, preferentially in configurations where at least one of the SiH3 radicals is in a "diffusive state." Our results are in agreement with experimental observations and results of plasma process simulators showing that the primary source for disilane in low-power plasmas may be the substrate surface.
我们对硅薄膜表面上的生长前驱体——硅氢自由基(SiH3)之间的相互作用进行了详细分析。该分析基于对氢终止的Si(001)-(2x1)表面进行密度泛函理论计算,以及对分子动力学(MD)生成的氢化非晶硅(a-Si:H)薄膜表面上的薄膜生长进行分子动力学(MD)模拟的协同组合。特别地,作者发现两个相互作用的生长前驱体可能形成乙硅烷(Si2H6)并从表面解吸,或者发生歧化反应,导致形成表面二氢化物(吸附的SiH2物种)和气相硅烷(SiH4)。发现形成乙硅烷的反应势垒强烈依赖于硅表面的局部化学环境,并且如果一个/两个相互作用的前驱体处于“快速扩散状态”,即附着在五重配位的表面Si原子上,则反应势垒会降低(或消失)。最后,对于两个化学吸附的(即与四重配位的表面Si原子键合的)SiH3自由基,获得了超过1 eV的活化能垒。歧化反应的活化能垒遵循相同的趋势,不过在大多数情况下,与从相同初始构型开始的乙硅烷形成反应相比,获得的势垒更高。分子动力学模拟证实,乙硅烷的形成和歧化反应也发生在a-Si:H生长表面上,优先发生在至少一个SiH3自由基处于“扩散状态”的构型中。我们的结果与实验观察结果以及等离子体过程模拟器的结果一致,表明低功率等离子体中乙硅烷的主要来源可能是衬底表面。