Pandey Sumeet C, Singh Tejinder, Maroudas Dimitrios
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-3110, USA.
J Chem Phys. 2009 Jul 21;131(3):034503. doi: 10.1063/1.3152846.
Based on an atomically detailed surface growth model, we have performed kinetic Monte Carlo (KMC) simulations to determine the surface chemical composition of plasma deposited hydrogenated amorphous silicon (a-Si:H) thin films as a function of substrate temperature. Our surface growth kinetic model consists of a combination of various surface rate processes, including silyl (SiH(3)) radical chemisorption onto surface dangling bonds or insertion into Si-Si surface bonds, SiH(3) physisorption, SiH(3) surface diffusion, abstraction of surface H by SiH(3) radicals, surface hydride dissociation reactions, as well as desorption of SiH(3), SiH(4), and Si(2)H(6) species into the gas phase. Transition rates for the adsorption, surface reaction and diffusion, and desorption processes accounted for in the KMC simulations are based on first-principles density-functional-theory computations of the corresponding optimal pathways on the H-terminated Si(001)-(2x1) surface. Results are reported for two types of KMC simulations. The first employs a fully ab initio database of activation energy barriers for the surface rate processes involved and is appropriate for modeling the early stages of growth. The second uses approximate rates for all the relevant processes to account properly for the effects on the activation energetics of interactions between species adsorbed at neighboring surface sites and is appropriate to model later stages of growth toward a steady state of the surface composition. The KMC predictions for the temperature dependence of the surface concentration of SiH(x(s)) (x = 1,2,3) species, the surface hydrogen content, and the surface dangling-bond coverage are compared to experimental measurements on a-Si:H films deposited under operating conditions for which the SiH(3) radical is the dominant deposition precursor. The predictions of both KMC simulation types are consistent with the reported experimental data, which are based on in situ attenuated total reflection Fourier transformed infrared spectroscopy.
基于一个原子尺度详细的表面生长模型,我们进行了动力学蒙特卡罗(KMC)模拟,以确定等离子体沉积氢化非晶硅(a-Si:H)薄膜的表面化学成分与衬底温度的函数关系。我们的表面生长动力学模型由各种表面速率过程组合而成,包括硅烷基(SiH(3))自由基化学吸附到表面悬空键上或插入Si-Si表面键中、SiH(3)物理吸附、SiH(3)表面扩散、SiH(3)自由基夺取表面H、表面氢化物解离反应,以及SiH(3)、SiH(4)和Si(2)H(6)物种解吸进入气相。KMC模拟中考虑的吸附、表面反应和扩散以及解吸过程的跃迁速率基于H端接的Si(001)-(2x1)表面上相应最优路径的第一性原理密度泛函理论计算。报告了两种类型KMC模拟的结果。第一种使用了所涉及表面速率过程的全从头算活化能垒数据库,适用于模拟生长的早期阶段。第二种对所有相关过程使用近似速率,以适当考虑相邻表面位点吸附物种之间相互作用对活化能的影响,适用于模拟表面组成达到稳态的后期生长阶段。将KMC对SiH(x(s))(x = 1,2,3)物种的表面浓度、表面氢含量和表面悬空键覆盖率与温度依赖性的预测结果,与在以SiH(3)自由基为主要沉积前驱体的操作条件下沉积的a-Si:H薄膜的实验测量结果进行了比较。两种类型KMC模拟的预测结果均与基于原位衰减全反射傅里叶变换红外光谱的已报道实验数据一致。