Suppr超能文献

患有复杂疾病的人群的正向时间模拟。

Forward-time simulations of human populations with complex diseases.

作者信息

Peng Bo, Amos Christopher I, Kimmel Marek

机构信息

Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America.

出版信息

PLoS Genet. 2007 Mar 23;3(3):e47. doi: 10.1371/journal.pgen.0030047. Epub 2007 Feb 15.

Abstract

Due to the increasing power of personal computers, as well as the availability of flexible forward-time simulation programs like simuPOP, it is now possible to simulate the evolution of complex human diseases using a forward-time approach. This approach is potentially more powerful than the coalescent approach since it allows simulations of more than one disease susceptibility locus using almost arbitrary genetic and demographic models. However, the application of such simulations has been deterred by the lack of a suitable simulation framework. For example, it is not clear when and how to introduce disease mutants-especially those under purifying selection-to an evolving population, and how to control the disease allele frequencies at the last generation. In this paper, we introduce a forward-time simulation framework that allows us to generate large multi-generation populations with complex diseases caused by unlinked disease susceptibility loci, according to specified demographic and evolutionary properties. Unrelated individuals, small or large pedigrees can be drawn from the resulting population and provide samples for a wide range of study designs and ascertainment methods. We demonstrate our simulation framework using three examples that map genes associated with affection status, a quantitative trait, and the age of onset of a hypothetical cancer, respectively. Nonadditive fitness models, population structure, and gene-gene interactions are simulated. Case-control, sibpair, and large pedigree samples are drawn from the simulated populations and are examined by a variety of gene-mapping methods.

摘要

由于个人计算机功能日益强大,以及诸如simuPOP之类的灵活的正向时间模拟程序的出现,现在使用正向时间方法来模拟复杂人类疾病的演变成为可能。这种方法可能比溯祖方法更强大,因为它允许使用几乎任意的遗传和人口模型对多个疾病易感基因座进行模拟。然而,由于缺乏合适的模拟框架,此类模拟的应用受到了阻碍。例如,尚不清楚何时以及如何将疾病突变体(尤其是那些处于净化选择下的突变体)引入不断进化的种群,以及如何控制最后一代的疾病等位基因频率。在本文中,我们介绍了一个正向时间模拟框架,该框架使我们能够根据指定的人口统计学和进化特性,生成由不连锁的疾病易感基因座引起的具有复杂疾病的大型多代种群。可以从所得种群中抽取无关个体、大小不等的家系,并为广泛的研究设计和确定方法提供样本。我们使用三个例子展示了我们的模拟框架,这三个例子分别绘制了与患病状态、数量性状以及一种假设癌症的发病年龄相关的基因。模拟了非加性适合度模型、种群结构和基因-基因相互作用。从模拟种群中抽取病例对照、同胞对和大型家系样本,并通过多种基因定位方法进行检验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/693a/1839145/21b9e692be02/pgen.0030047.g001.jpg

相似文献

1
Forward-time simulations of human populations with complex diseases.
PLoS Genet. 2007 Mar 23;3(3):e47. doi: 10.1371/journal.pgen.0030047. Epub 2007 Feb 15.
2
GENOMEPOP: a program to simulate genomes in populations.
BMC Bioinformatics. 2008 Apr 30;9:223. doi: 10.1186/1471-2105-9-223.
4
simuPOP: a forward-time population genetics simulation environment.
Bioinformatics. 2005 Sep 15;21(18):3686-7. doi: 10.1093/bioinformatics/bti584. Epub 2005 Jul 14.
5
A flexible forward simulator for populations subject to selection and demography.
Bioinformatics. 2008 Dec 1;24(23):2786-7. doi: 10.1093/bioinformatics/btn522. Epub 2008 Oct 7.
6
Simulations provide support for the common disease-common variant hypothesis.
Genetics. 2007 Feb;175(2):763-76. doi: 10.1534/genetics.106.058164. Epub 2006 Dec 6.
7
Coalescent-based association mapping and fine mapping of complex trait loci.
Genetics. 2005 Feb;169(2):1071-92. doi: 10.1534/genetics.104.031799. Epub 2004 Oct 16.
9
Forward-time simulation of realistic samples for genome-wide association studies.
BMC Bioinformatics. 2010 Sep 1;11:442. doi: 10.1186/1471-2105-11-442.

引用本文的文献

1
Selecting among Alternative Scenarios of Human Evolution by Simulated Genetic Gradients.
Genes (Basel). 2018 Oct 18;9(10):506. doi: 10.3390/genes9100506.
2
Simulating variance heterogeneity in quantitative genome wide association studies.
BMC Bioinformatics. 2018 Mar 21;19(Suppl 3):72. doi: 10.1186/s12859-018-2061-1.
5
ARG-walker: inference of individual specific strengths of meiotic recombination hotspots by population genomics analysis.
BMC Genomics. 2015;16 Suppl 12(Suppl 12):S1. doi: 10.1186/1471-2164-16-S12-S1. Epub 2015 Dec 9.
6
Estimating time to the most recent common ancestor (TMRCA): comparison and application of eight methods.
Eur J Hum Genet. 2016 Aug;24(8):1195-201. doi: 10.1038/ejhg.2015.258. Epub 2015 Dec 16.
7
Spatial and temporal simulation of human evolution. Methods, frameworks and applications.
Curr Genomics. 2014 Aug;15(4):245-55. doi: 10.2174/1389202915666140506223639.
8
A C++ template library for efficient forward-time population genetic simulation of large populations.
Genetics. 2014 Sep;198(1):157-66. doi: 10.1534/genetics.114.165019. Epub 2014 Jun 20.
9
BioBin: a bioinformatics tool for automating the binning of rare variants using publicly available biological knowledge.
BMC Med Genomics. 2013;6 Suppl 2(Suppl 2):S6. doi: 10.1186/1755-8794-6-S2-S6. Epub 2013 May 7.
10
Efficient simulation of epistatic interactions in case-parent trios.
Hum Hered. 2013;75(1):12-22. doi: 10.1159/000348789. Epub 2013 Mar 27.

本文引用的文献

1
ESTIMATING F-STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE.
Evolution. 1984 Nov;38(6):1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x.
2
Simulations provide support for the common disease-common variant hypothesis.
Genetics. 2007 Feb;175(2):763-76. doi: 10.1534/genetics.106.058164. Epub 2006 Dec 6.
3
A geographically explicit genetic model of worldwide human-settlement history.
Am J Hum Genet. 2006 Aug;79(2):230-7. doi: 10.1086/505436. Epub 2006 May 30.
4
Estimating the power of variance component linkage analysis in large pedigrees.
Genet Epidemiol. 2006 Sep;30(6):471-84. doi: 10.1002/gepi.20160.
6
CoaSim: a flexible environment for simulating genetic data under coalescent models.
BMC Bioinformatics. 2005 Oct 14;6:252. doi: 10.1186/1471-2105-6-252.
7
SimPed: a simulation program to generate haplotype and genotype data for pedigree structures.
Hum Hered. 2005;60(2):119-22. doi: 10.1159/000088914. Epub 2005 Oct 13.
8
Tracing modern human origins.
Science. 2005 Sep 23;309(5743):1995-7; author reply 1995-7. doi: 10.1126/science.309.5743.1995b.
9
An evolutionary framework for common diseases: the ancestral-susceptibility model.
Trends Genet. 2005 Nov;21(11):596-601. doi: 10.1016/j.tig.2005.08.007. Epub 2005 Sep 8.
10
simuPOP: a forward-time population genetics simulation environment.
Bioinformatics. 2005 Sep 15;21(18):3686-7. doi: 10.1093/bioinformatics/bti584. Epub 2005 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验