Suppr超能文献

临床颅内脑电图记录中高频振荡的人工与自动检测

Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings.

作者信息

Gardner Andrew B, Worrell Greg A, Marsh Eric, Dlugos Dennis, Litt Brian

机构信息

Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Clin Neurophysiol. 2007 May;118(5):1134-43. doi: 10.1016/j.clinph.2006.12.019. Epub 2007 Mar 23.

Abstract

OBJECTIVE

Recent studies indicate that pathologic high-frequency oscillations (HFOs) are signatures of epileptogenic brain. Automated tools are required to characterize these events. We present a new algorithm tuned to detect HFOs from 30 to 85 Hz, and validate it against human expert electroencephalographers.

METHODS

We randomly selected 28 3-min single-channel epochs of intracranial EEG (IEEG) from two patients. Three human reviewers and three automated detectors marked all records to identify candidate HFOs. Subsequently, human reviewers verified all markings.

RESULTS

A total of 1330 events were collectively identified. The new method presented here achieved 89.7% accuracy against a consensus set of human expert markings. A one-way ANOVA determined no difference between the mean F-measures of the human reviewers and automated algorithm. Human kappa statistics (mean kappa=0.38) demonstrated marginal identification consistency, primarily due to false negative errors.

CONCLUSIONS

We present an HFO detector that improves upon existing algorithms, and performs as well as human experts on our test data set. Validation of detector performance must be compared to more than one expert because of interrater variability.

SIGNIFICANCE

This algorithm will be useful for analyzing large EEG databases to determine the pathophysiological significance of HFO events in human epileptic networks.

摘要

目的

近期研究表明,病理性高频振荡(HFOs)是致痫性脑区的特征。需要自动化工具来表征这些事件。我们提出了一种新算法,用于检测30至85赫兹的HFOs,并与人类专家脑电图分析师进行验证。

方法

我们从两名患者中随机选择了28个3分钟的单通道颅内脑电图(IEEG)片段。三名人类审阅者和三个自动探测器对所有记录进行标记,以识别候选HFOs。随后,人类审阅者对所有标记进行核实。

结果

共识别出1330个事件。此处提出的新方法相对于人类专家标记的共识集,准确率达到了89.7%。单向方差分析确定人类审阅者和自动算法的平均F值之间没有差异。人类kappa统计量(平均kappa = 0.38)显示出边缘识别一致性,主要是由于假阴性错误。

结论

我们提出了一种HFO探测器,它改进了现有算法,并且在我们的测试数据集上表现与人类专家相当。由于评分者间的变异性,探测器性能的验证必须与不止一位专家进行比较。

意义

该算法将有助于分析大型脑电图数据库,以确定HFO事件在人类癫痫网络中的病理生理意义。

相似文献

1
Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings.
Clin Neurophysiol. 2007 May;118(5):1134-43. doi: 10.1016/j.clinph.2006.12.019. Epub 2007 Mar 23.
2
Interrater reliability of visually evaluated high frequency oscillations.
Clin Neurophysiol. 2017 Mar;128(3):433-441. doi: 10.1016/j.clinph.2016.12.017. Epub 2016 Dec 30.
3
Redaction of false high frequency oscillations due to muscle artifact improves specificity to epileptic tissue.
Clin Neurophysiol. 2019 Jun;130(6):976-985. doi: 10.1016/j.clinph.2019.03.028. Epub 2019 Apr 11.
4
Generalizability of High Frequency Oscillation Evaluations in the Ripple Band.
Front Neurol. 2018 Jun 28;9:510. doi: 10.3389/fneur.2018.00510. eCollection 2018.
5
High-frequency oscillations detected in epileptic networks using swarmed neural-network features.
Ann Biomed Eng. 2007 Sep;35(9):1573-84. doi: 10.1007/s10439-007-9333-7. Epub 2007 Jun 1.
6
Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy.
Epilepsia. 2012 Sep;53(9):1607-17. doi: 10.1111/j.1528-1167.2012.03629.x. Epub 2012 Aug 20.
8
Automatic vs. Manual Detection of High Frequency Oscillations in Intracranial Recordings From the Human Temporal Lobe.
Front Neurol. 2020 Oct 19;11:563577. doi: 10.3389/fneur.2020.563577. eCollection 2020.
9
Pseudo-HFOs Elimination in iEEG Recordings Using a Robust Residual-Based Dictionary Learning Framework.
IEEE J Biomed Health Inform. 2025 Feb;29(2):857-869. doi: 10.1109/JBHI.2024.3516613. Epub 2025 Feb 10.
10
Potential for unreliable interpretation of EEG recorded with microelectrodes.
Epilepsia. 2013 Aug;54(8):1391-401. doi: 10.1111/epi.12202. Epub 2013 May 3.

引用本文的文献

3
Pseudo-HFOs Elimination in iEEG Recordings Using a Robust Residual-Based Dictionary Learning Framework.
IEEE J Biomed Health Inform. 2025 Feb;29(2):857-869. doi: 10.1109/JBHI.2024.3516613. Epub 2025 Feb 10.
4
The classification of absence seizures using power-to-power cross-frequency coupling analysis with a deep learning network.
Front Neuroinform. 2025 Feb 10;19:1513661. doi: 10.3389/fninf.2025.1513661. eCollection 2025.
5
The role of electroencephalography in epilepsy research-From seizures to interictal activity and comorbidities.
Epilepsia. 2025 May;66(5):1374-1393. doi: 10.1111/epi.18282. Epub 2025 Feb 6.
6
Discovering EEG biomarkers of Lennox-Gastaut syndrome through unsupervised time-frequency analysis.
Epilepsia. 2025 Feb;66(2):541-553. doi: 10.1111/epi.18211. Epub 2024 Dec 12.
8
Optimizing automated detection of high frequency oscillations using visual markings does not improve SOZ localization.
Clin Neurophysiol. 2024 Aug;164:30-39. doi: 10.1016/j.clinph.2024.05.010. Epub 2024 May 27.
10
PyHFO: lightweight deep learning-powered end-to-end high-frequency oscillations analysis application.
J Neural Eng. 2024 May 28;21(3):036023. doi: 10.1088/1741-2552/ad4916.

本文引用的文献

1
High-frequency oscillations during human focal seizures.
Brain. 2006 Jun;129(Pt 6):1593-608. doi: 10.1093/brain/awl085. Epub 2006 Apr 21.
2
Epileptogenic actions of GABA and fast oscillations in the developing hippocampus.
Neuron. 2005 Dec 8;48(5):787-96. doi: 10.1016/j.neuron.2005.09.026.
3
Agreement, the f-measure, and reliability in information retrieval.
J Am Med Inform Assoc. 2005 May-Jun;12(3):296-8. doi: 10.1197/jamia.M1733. Epub 2005 Jan 31.
4
High-frequency oscillations and seizure generation in neocortical epilepsy.
Brain. 2004 Jul;127(Pt 7):1496-506. doi: 10.1093/brain/awh149. Epub 2004 May 20.
6
Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates.
J Neurophysiol. 2003 Feb;89(2):841-52. doi: 10.1152/jn.00420.2002.
8
Local generation of fast ripples in epileptic brain.
J Neurosci. 2002 Mar 1;22(5):2012-21. doi: 10.1523/JNEUROSCI.22-05-02012.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验