Francis Jeremy S, Olariu Ana, Kobayashi Eiji, Leone Paola
Cell and Gene Therapy Center, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 401 Haddon Ave., E and R Building Room 390, Camden, NJ 08103, USA.
Exp Neurol. 2007 May;205(1):177-89. doi: 10.1016/j.expneurol.2007.01.039. Epub 2007 Feb 15.
We have investigated the gliogenic potential of cells isolated from a recently described GFP-transgenic rat [Inoue, H., Ohsawa, I., Murakami, T., Kimura, A., Hakamata, Y., Sato, Y., Kaneko, T., Takahashi, M., Okada, T., Ozawa, K., Francis, J., Leone, P., Kobayashi, E., 2005. Development of new inbred transgenic strains of rats with LacZ or GFP. Biochem Biophys Res Commun 329 288-295.] for application to oligodendrocyte replacement in models of white matter insult and disease. These transgenic rats present native GFP fluorescence in oligodendrocytes of the CNS, with no detectable fluorescence in astrocytes or mature neurons. By targeting a highly gliogenic period of postnatal development, we show that sphere-forming cultures of proliferating cells generated from the GFP-transgenic brain give rise to significant numbers of differentiated oligodendrocytes in vitro. Postnatal source tissue was significantly more gliogenic than embryonic source tissue, with greater than 50% of postnatally derived cells differentiating into GFP-positive oligodendrocytes. Differentiated oligodendrocytes exhibited an increased intensity of GFP fluorescence concomitant with the acquisition of mature oligodendrocyte-specific markers in both isolated cultures and in co-culture with primary neurons. Transplantation of postnatally derived GFP-positive sphere-forming cells into ethidium bromide lesioned Kyoto-Wistar rats resulted in the engraftment and survival of GFP-positive oligodendrocytes for at least 6 weeks in the host white matter and cerebral cortex. Our results show that sphere-forming cultures of cells isolated from the early postnatal GFP-Lewis rat brain are a useful tool for oligodendrocyte replacement studies.
我们研究了从最近描述的绿色荧光蛋白(GFP)转基因大鼠[井上浩、大泽一、村上隆、木村明、袴田洋、佐藤洋、金子隆、高桥真、冈田哲、小泽克、弗朗西斯·J、莱昂内·P、小林英,2005年。新型LacZ或GFP转基因近交系大鼠的培育。生物化学与生物物理研究通讯329 288 - 295]分离出的细胞生成少突胶质细胞的潜力,以应用于白质损伤和疾病模型中的少突胶质细胞替代。这些转基因大鼠的中枢神经系统少突胶质细胞呈现天然GFP荧光,星形胶质细胞或成熟神经元中未检测到荧光。通过针对出生后发育的高度生成胶质细胞阶段,我们发现从GFP转基因大脑产生的增殖细胞形成球状体的培养物在体外可产生大量分化的少突胶质细胞。出生后来源的组织比胚胎来源的组织生成胶质细胞的能力明显更强,超过50%的出生后来源细胞分化为GFP阳性少突胶质细胞。在分离培养以及与原代神经元共培养中,分化的少突胶质细胞在获得成熟少突胶质细胞特异性标志物的同时,GFP荧光强度增加。将出生后来源的GFP阳性形成球状体的细胞移植到用溴化乙锭损伤的京都 - 威斯塔大鼠中,GFP阳性少突胶质细胞在宿主白质和大脑皮层中至少存活6周。我们的结果表明,从出生后早期GFP - 刘易斯大鼠大脑分离出的细胞形成球状体的培养物是少突胶质细胞替代研究的有用工具。