Yao Meng, Denver Robert J
Department of Molecular, Cellular and Developmental Biology, 3065C Kraus Natural Science Building, The University of Michigan, Ann Arbor, MI 48109-1048, USA.
Gen Comp Endocrinol. 2007 Aug-Sep;153(1-3):200-16. doi: 10.1016/j.ygcen.2007.01.046. Epub 2007 Feb 17.
Developmental, physiological, and behavioral adjustments in response to environmental change are crucial for animal survival. In vertebrates, the neuroendocrine stress system, comprised of the hypothalamus, pituitary, and adrenal/interrenal glands (HPA/HPI axis) plays a central role in adaptive stress responses. Corticotropin-releasing factor (CRF) is the primary hypothalamic neurohormone regulating the HPA/HPI axis. CRF also functions as a neurotransmitter/neuromodulator in the limbic system and brain stem to coordinate endocrine, behavioral, and autonomic responses to stressors. Glucocorticoids, the end products of the HPA/HPI axis, cause feedback regulation at multiple levels of the stress axis, exerting direct and indirect actions on CRF neurons. The spatial expression patterns of CRF, and stressor-dependent CRF gene activation in the central nervous system (CNS) are evolutionarily conserved. This suggests conservation of the gene regulatory mechanisms that underlie tissue-specific and stressor-dependent CRF expression. Comparative genomic analysis showed that the proximal promoter regions of vertebrate CRF genes are highly conserved. Several cis regulatory elements and trans acting factors have been implicated in stressor-dependent CRF gene activation, including cyclic AMP response element binding protein (CREB), activator protein 1 (AP-1/Fos/Jun), and nerve growth factor induced gene B (NGFI-B). Glucocorticoids, acting through the glucocorticoid and mineralocorticoid receptors, either repress or promote CRF expression depending on physiological state and CNS region. In this review, we take a comparative/evolutionary approach to understand the physiological regulation of CRF gene expression. We also discuss evolutionarily conserved molecular mechanisms that operate at the level of CRF gene transcription.
动物为应对环境变化而进行的发育、生理和行为调整对其生存至关重要。在脊椎动物中,由下丘脑、垂体和肾上腺/肾间腺组成的神经内分泌应激系统(HPA/HPI轴)在适应性应激反应中起核心作用。促肾上腺皮质激素释放因子(CRF)是调节HPA/HPI轴的主要下丘脑神经激素。CRF还作为边缘系统和脑干中的神经递质/神经调节剂,以协调对压力源的内分泌、行为和自主反应。糖皮质激素是HPA/HPI轴的终产物,在应激轴的多个水平上引起反馈调节,对CRF神经元产生直接和间接作用。CRF在中枢神经系统(CNS)中的空间表达模式以及应激源依赖性CRF基因激活在进化上是保守的。这表明组织特异性和应激源依赖性CRF表达背后的基因调控机制具有保守性。比较基因组分析表明,脊椎动物CRF基因的近端启动子区域高度保守。几种顺式调节元件和反式作用因子与应激源依赖性CRF基因激活有关,包括环磷酸腺苷反应元件结合蛋白(CREB)、激活蛋白1(AP-1/Fos/Jun)和神经生长因子诱导基因B(NGFI-B)。糖皮质激素通过糖皮质激素和盐皮质激素受体发挥作用,根据生理状态和CNS区域,要么抑制要么促进CRF表达。在本综述中,我们采用比较/进化方法来理解CRF基因表达的生理调节。我们还讨论了在CRF基因转录水平上起作用的进化保守分子机制。