Suppr超能文献

肌肉生长抑制素(GDF8)功能丧失会增加骨髓间充质干细胞的成骨分化,但这种成骨作用会因失用而被消除。

Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading.

作者信息

Hamrick M W, Shi X, Zhang W, Pennington C, Thakore H, Haque M, Kang B, Isales C M, Fulzele S, Wenger K H

机构信息

Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, GA 30912, USA.

出版信息

Bone. 2007 Jun;40(6):1544-53. doi: 10.1016/j.bone.2007.02.012. Epub 2007 Feb 23.

Abstract

Myostatin (GDF8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show a significant increase in muscle mass and bone density compared to normal mice. In order to further define the role of myostatin in regulating bone mass we sought to determine if loss of myostatin function significantly altered the potential for osteogenic differentiation in bone marrow-derived mesenchymal stem cells in vitro and in vivo. We first examined expression of the myostatin receptor, the type IIB activin receptor (AcvrIIB), in bone marrow-derived mesenchymal stem cells (BMSCs) isolated from mouse long bones. This receptor was found to be expressed at high levels in BMSCs, and we were also able to detect AcvrIIB protein in BMSCs in situ using immunofluorescence. BMSCs isolated from myostatin-deficient mice showed increased osteogenic differentiation compared to wild-type mice; however, treatment of BMSCs from myostatin-deficient mice with recombinant myostatin did not attenuate the osteogenic differentiation of these cells. Loading of BMSCs in vitro increased the expression of osteogenic factors such as BMP-2 and IGF-1, but treatment of BMSCs with recombinant myostatin was found to decrease the expression of these factors. We investigated the effects of myostatin loss-of-function on the differentiation of BMSCs in vivo using hindlimb unloading (7-day tail suspension). Unloading caused a greater increase in marrow adipocyte number, and a greater decrease in osteoblast number, in myostatin-deficient mice than in normal mice. These data suggest that the increased osteogenic differentiation of BMSCs from mice lacking myostatin is load-dependent, and that myostatin may alter the mechanosensitivity of BMSCs by suppressing the expression of osteogenic factors during mechanical stimulation. Furthermore, although myostatin deficiency increases muscle mass and bone strength, it does not prevent muscle and bone catabolism with unloading.

摘要

肌肉生长抑制素(GDF8)是骨骼肌生长的负调节因子,与正常小鼠相比,缺乏肌肉生长抑制素的小鼠肌肉质量和骨密度显著增加。为了进一步明确肌肉生长抑制素在调节骨量中的作用,我们试图确定肌肉生长抑制素功能丧失是否会在体外和体内显著改变骨髓间充质干细胞的成骨分化潜能。我们首先检测了从小鼠长骨分离的骨髓间充质干细胞(BMSCs)中肌肉生长抑制素受体IIB型激活素受体(AcvrIIB)的表达。发现该受体在BMSCs中高水平表达,并且我们还能够使用免疫荧光在原位检测BMSCs中的AcvrIIB蛋白。与野生型小鼠相比,从缺乏肌肉生长抑制素的小鼠中分离的BMSCs表现出成骨分化增加;然而,用重组肌肉生长抑制素处理来自缺乏肌肉生长抑制素的小鼠的BMSCs并没有减弱这些细胞的成骨分化。体外加载BMSCs增加了成骨因子如BMP-2和IGF-1的表达,但发现用重组肌肉生长抑制素处理BMSCs会降低这些因子的表达。我们使用后肢卸载(7天尾悬吊)研究了肌肉生长抑制素功能丧失对体内BMSCs分化的影响。卸载导致缺乏肌肉生长抑制素的小鼠骨髓脂肪细胞数量增加幅度更大,成骨细胞数量减少幅度更大,比正常小鼠更明显。这些数据表明,来自缺乏肌肉生长抑制素的小鼠的BMSCs成骨分化增加是负荷依赖性的,并且肌肉生长抑制素可能通过在机械刺激期间抑制成骨因子的表达来改变BMSCs的机械敏感性。此外,虽然肌肉生长抑制素缺乏会增加肌肉质量和骨强度,但它并不能防止卸载引起的肌肉和骨分解代谢。

相似文献

2
Orai1 mediates osteogenic differentiation via BMP signaling pathway in bone marrow mesenchymal stem cells.
Biochem Biophys Res Commun. 2016 May 13;473(4):1309-1314. doi: 10.1016/j.bbrc.2016.04.068. Epub 2016 Apr 14.
3
Wnt5a/FZD4 Mediates the Mechanical Stretch-Induced Osteogenic Differentiation of Bone Mesenchymal Stem Cells.
Cell Physiol Biochem. 2018;48(1):215-226. doi: 10.1159/000491721. Epub 2018 Jul 13.
5
Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells.
Int J Biochem Cell Biol. 2013 Aug;45(8):1813-20. doi: 10.1016/j.biocel.2013.05.034. Epub 2013 Jun 4.

引用本文的文献

1
Physical Activity, Exerkines, and Their Role in Cancer Cachexia.
Int J Mol Sci. 2025 Aug 19;26(16):8011. doi: 10.3390/ijms26168011.
2
Roles of myokines in osteoporosis under physiological and diabetic conditions.
Front Endocrinol (Lausanne). 2025 Jun 11;16:1600218. doi: 10.3389/fendo.2025.1600218. eCollection 2025.
5
Donor age and breed determine mesenchymal stromal cell characteristics.
Stem Cell Res Ther. 2025 Feb 28;16(1):99. doi: 10.1186/s13287-025-04236-2.
6
Bone and muscle crosstalk in ageing and disease.
Nat Rev Endocrinol. 2025 Jun;21(6):375-390. doi: 10.1038/s41574-025-01088-x. Epub 2025 Feb 26.
7
Aging: A struggle for beneficial to overcome negative factors made by muscle and bone.
Mech Ageing Dev. 2025 Apr;224:112039. doi: 10.1016/j.mad.2025.112039. Epub 2025 Feb 12.
8
Poor bone health in Duchenne muscular dystrophy: a multifactorial problem beyond corticosteroids and loss of ambulation.
Front Endocrinol (Lausanne). 2024 Nov 28;15:1398050. doi: 10.3389/fendo.2024.1398050. eCollection 2024.
9
Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions.
Mol Cell Biochem. 2025 Mar;480(3):1535-1553. doi: 10.1007/s11010-024-05120-y. Epub 2024 Sep 28.
10
Bone-muscle crosstalk under physiological and pathological conditions.
Cell Mol Life Sci. 2024 Jul 27;81(1):310. doi: 10.1007/s00018-024-05331-y.

本文引用的文献

2
Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise.
J Bone Miner Res. 2006 Mar;21(3):477-83. doi: 10.1359/JBMR.051203. Epub 2005 Dec 5.
4
Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multipotent cells.
Endocrinology. 2005 Aug;146(8):3547-57. doi: 10.1210/en.2005-0362. Epub 2005 May 5.
6
Osteoblast progenitor fate and age-related bone loss.
J Musculoskelet Neuronal Interact. 2002 Dec;2(6):581-3.
7
Myostatin mutation associated with gross muscle hypertrophy in a child.
N Engl J Med. 2004 Jun 24;350(26):2682-8. doi: 10.1056/NEJMoa040933.
8
The 'muscle-bone unit' during the pubertal growth spurt.
Bone. 2004 May;34(5):771-5. doi: 10.1016/j.bone.2004.01.022.
10
Effects of increased muscle mass on bone in male mice overexpressing IGF-I in skeletal muscles.
Calcif Tissue Int. 2003 Aug;73(2):196-201. doi: 10.1007/s00223-002-1072-z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验