Allen Andrew J, Thomas Jeffrey J, Jennings Hamlin M
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.
Nat Mater. 2007 Apr;6(4):311-6. doi: 10.1038/nmat1871. Epub 2007 Mar 25.
Although Portland cement concrete is the world's most widely used manufactured material, basic questions persist regarding its internal structure and water content, and their effect on concrete behaviour. Here, for the first time without recourse to drying methods, we measure the composition and solid density of the principal binding reaction product of cement hydration, calcium-silicate-hydrate (C-S-H) gel, one of the most complex of all gels. We also quantify a nanoscale calcium hydroxide phase that coexists with C-S-H gel. By combining small-angle neutron and X-ray scattering data, and by exploiting the hydrogen/deuterium neutron isotope effect both in water and methanol, we determine the mean formula and mass density of the nanoscale C-S-H gel particles in hydrating cement. We show that the formula, (CaO)1.7(SiO2)(H2O)1.80, and density, 2.604 Mg m(-3), differ from previous values for C-S-H gel, associated with specific drying conditions. Whereas previous studies have classified water within C-S-H gel by how tightly it is bound, in this study we classify water by its location-with implications for defining the chemically active (C-S-H) surface area within cement, and for predicting concrete properties.
尽管波特兰水泥混凝土是世界上使用最广泛的人造材料,但关于其内部结构和含水量及其对混凝土性能的影响等基本问题依然存在。在此,我们首次无需借助干燥方法,就测量了水泥水化的主要粘结反应产物——硅酸钙水化物(C-S-H)凝胶(所有凝胶中最复杂的一种)的成分和固体密度。我们还对与C-S-H凝胶共存的纳米级氢氧化钙相进行了量化。通过结合小角中子散射和X射线散射数据,并利用水和甲醇中的氢/氘中子同位素效应,我们确定了水化水泥中纳米级C-S-H凝胶颗粒的平均化学式和质量密度。我们发现,该化学式(CaO)1.7(SiO2)(H2O)1.80和密度2.604 Mg m(-3)与之前在特定干燥条件下得到的C-S-H凝胶值不同。以往研究通过结合强度来对C-S-H凝胶中的水进行分类,而在本研究中,我们根据水的位置对其进行分类——这对定义水泥中具有化学活性的(C-S-H)表面积以及预测混凝土性能具有重要意义。