Suppr超能文献

甲基自由基与羟基自由基反应的动力学及甲醇分解

Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition.

作者信息

Jasper Ahren W, Klippenstein Stephen J, Harding Lawrence B, Ruscic Branko

机构信息

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, USA.

出版信息

J Phys Chem A. 2007 May 17;111(19):3932-50. doi: 10.1021/jp067585p. Epub 2007 Mar 16.

Abstract

The CH3 + OH bimolecular reaction and the dissociation of methanol are studied theoretically at conditions relevant to combustion chemistry. Kinetics for the CH3 + OH barrierless association reaction and for the H + CH2OH and H + CH3O product channels are determined in the high-pressure limit using variable reaction coordinate transition state theory and multireference electronic structure calculations to evaluate the fragment interaction energies. The CH3 + OH --> 3CH2 + H2O abstraction reaction and the H2 + HCOH and H2 + H2CO product channels feature localized dynamical bottlenecks and are treated using variational transition state theory and QCISD(T) energies extrapolated to the complete basis set limit. The 1CH2 + H2O product channel has two dynamical regimes, featuring both an inner saddle point and an outer barrierless region, and it is shown that a microcanonical two-state model is necessary to properly describe the association rate for this reaction over a broad temperature range. Experimental channel energies for the methanol system are reevaluated using the Active Thermochemical Tables (ATcT) approach. Pressure dependent, phenomenological rate coefficients for the CH3 + OH bimolecular reaction and for methanol decomposition are determined via master equation simulations. The predicted results agree well with experimental results, including those from a companion high-temperature shock tube determination for the decomposition of methanol.

摘要

在与燃烧化学相关的条件下,对CH₃ + OH双分子反应和甲醇的解离进行了理论研究。使用可变反应坐标过渡态理论和多参考电子结构计算来评估碎片相互作用能,在高压极限下确定了CH₃ + OH无障碍缔合反应以及H + CH₂OH和H + CH₃O产物通道的动力学。CH₃ + OH → 3CH₂ + H₂O提取反应以及H₂ + HCOH和H₂ + H₂CO产物通道具有局部动力学瓶颈,采用变分过渡态理论和外推到完全基组极限的QCISD(T)能量进行处理。1CH₂ + H₂O产物通道有两个动力学区域,既有内鞍点又有外无障碍区域,结果表明,在很宽的温度范围内,需要一个微正则双态模型来正确描述该反应的缔合速率。使用活性热化学表(ATcT)方法重新评估了甲醇系统的实验通道能量。通过主方程模拟确定了CH₃ + OH双分子反应和甲醇分解的压力依赖性唯象速率系数。预测结果与实验结果吻合良好,包括来自配套的高温激波管对甲醇分解的测定结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验