Suppr超能文献

使用动力学蒙特卡罗方法对SiH(4)分解动力学进行从头算的赖斯-拉姆齐格-卡塞尔-马库斯/主方程研究。

An ab initio Rice-Ramsperger-Kassel-Marcus/master equation investigation of SiH(4) decomposition kinetics using a kinetic Monte Carlo approach.

作者信息

Barbato Alessandro, Seghi Carlo, Cavallotti Carlo

机构信息

Dipartimento di Chimica, Materiali ed Ingegneria Chimica G. Natta, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy.

出版信息

J Chem Phys. 2009 Feb 21;130(7):074108. doi: 10.1063/1.3077561.

Abstract

The unimolecular reaction of decomposition of SiH(4) to SiH(2) and H(2) and the bimolecular reaction between SiH(3) and H were investigated by solving the master equation using a stochastic kinetic Monte Carlo (KMC) approach. Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical kinetic constants were determined using classic transition state theory for the reaction of decomposition to SiH(2) and H(2) and microcanonical J-resolved variational transition state theory for decomposition to SiH(3) and H. Structures of reactants and transition states were determined at the B3LYP/aug-cc-pVTZ level, while energies were calculated at the CCSD(T) level and extended to the complete basis set limit. Unimolecular kinetic constants were directly computed from the results of KMC simulations using a new algorithm while bimolecular rate constants were calculated from stochastic reaction probabilities. The simulation results are in good agreement with experimental data for the unimolecular decomposition of SiH(4), which is in the falloff regime in the temperature (1100-1700 K) and pressure (10(-3)-10(1) bar) range investigated. The calculated high and low pressure limit kinetic constants for SiH(4) decomposition to SiH(2) and H(2) are k(infinity)=1.2x10(13)T(0.477) exp(-28 988/T) and k(0)=1.4x10(42)T(-7.245) exp(-33 153/T). The calculated Troe falloff parameter is F(cent)=0.979 exp(-T/1427)+0.021 exp(T/1489). The rate of the bimolecular reaction between SiH(3) and H to give SiH(2) and H(2) is pressure independent between 10(-3) and 100 bar and slightly temperature dependent between 300 and 2000 K. The kinetic constant interpolated in this temperature and pressure range is 6.9x10(11)T(0.736) exp(134.8/T(K)) cm(3) mol(-1) s(-1), which is among the highest values proposed in the literature for this process.

摘要

采用随机动力学蒙特卡罗(KMC)方法求解主方程,研究了SiH₄分解为SiH₂和H₂的单分子反应以及SiH₃与H之间的双分子反应。对于分解为SiH₂和H₂的反应,使用经典过渡态理论确定了赖斯 - 拉姆齐 - 卡塞尔 - 马库斯(RRKM)微正则动力学常数;对于分解为SiH₃和H的反应,使用微正则J分辨变分过渡态理论确定了该常数。反应物和过渡态的结构在B3LYP/aug-cc-pVTZ水平下确定,而能量在CCSD(T)水平下计算并扩展到完整基组极限。单分子动力学常数使用一种新算法直接从KMC模拟结果中计算得出,双分子速率常数则根据随机反应概率计算。模拟结果与在研究的温度(1100 - 1700 K)和压力(10⁻³ - 10¹ bar)范围内处于衰减区的SiH₄单分子分解的实验数据吻合良好。计算得到的SiH₄分解为SiH₂和H₂的高压极限和低压极限动力学常数分别为k(∞)=1.2×10¹³T⁰.⁴⁷⁷ exp(-28988/T)和k(0)=1.4×10⁴²T⁻⁷.²⁴⁵ exp(-33153/T)。计算得到的Troe衰减参数为F(cent)=0.979 exp(-T/1427)+0.021 exp(T/1489)。SiH₃与H反应生成SiH₂和H₂的双分子反应速率在10⁻³至100 bar之间与压力无关,在300至2000 K之间与温度有微弱依赖关系。在此温度和压力范围内插值得到的动力学常数为6.9×10¹¹T⁰.⁷³⁶ exp(134.8/T(K)) cm³ mol⁻¹ s⁻¹,这是该过程文献中提出的最高值之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验