Lafitte Thomas, Piñeiro Manuel M, Daridon Jean-Luc, Bessières David
Laboratoire des Fluides Complexes, Groupe Haute Pression, Université de Pau et des Pays de l'Adour, B.P. 1155, 64013 Pau Cedex, France.
J Phys Chem B. 2007 Apr 5;111(13):3447-61. doi: 10.1021/jp0682208. Epub 2007 Mar 14.
A recently derived version of the statistical associating fluid theory (SAFT), denoted as SAFT-VR Mie, which incorporates the Mie potentials within the SAFT-VR framework to model the monomer segment interactions (Lafitte et al. J. Chem. Phys. 2006, 124, 024509), is used for the study of second-order derivative properties and phase equilibria of alcohols and 1-alcohol + n-alkane binary mixtures. For this purpose, a variable repulsive potential is used to induce nonconformal interactions in the reference nonbonded fluid. These features have a significant influence on the chain and association contributions through the contact value of the radial distribution function, and they enhance the SAFT theory performance in the application to associating substances. When dealing with pure alcohols and 1-alcohol + n-alkane binary mixtures, an accurate description of both phase equilibria and second-order derivatives is obtained with a single set of molecular parameters. To explore the predictive ability limit of the model we have particularly focused our attention on secondary derivative properties, which display singularities due to the formation of aggregates. With this approach, we have found that the model is able to reproduce accurately the complex behavior of the isobaric heat capacity of alcohols as, for instance, the maximum versus temperature in the compressed liquid region. Furthermore, in the case of 1-hexanol + n-hexane binary mixtures, the proposed equation is found to capture the association effects on the pressure and temperature dependence of the isobaric thermal expansivity. These two special features, which to our knowledge have never been described by a theoretical model, emphasize both the validity of the changes in the model proposed and the physical meaning of the molecular parameters obtained in this study.
统计缔合流体理论(SAFT)的一个最新衍生版本,记为SAFT-VR Mie,它在SAFT-VR框架内纳入了米氏势来模拟单体段相互作用(拉菲特等人,《化学物理杂志》,2006年,第124卷,024509),用于研究醇类以及1-醇 + 正构烷烃二元混合物的二阶导数性质和相平衡。为此,使用了可变排斥势来在参考非键合流体中引入非共形相互作用。这些特征通过径向分布函数的接触值对链和缔合贡献有显著影响,并在应用于缔合物质时提高了SAFT理论的性能。在处理纯醇类和1-醇 + 正构烷烃二元混合物时,用单一组分子参数就能准确描述相平衡和二阶导数。为了探索该模型的预测能力极限,我们特别关注了二阶导数性质,由于聚集体的形成,这些性质表现出奇异性。通过这种方法,我们发现该模型能够准确再现醇类等压热容的复杂行为,例如压缩液体区域中最大值随温度的变化。此外,在1-己醇 + 正己烷二元混合物的情况下,发现所提出的方程能够捕捉缔合对等压热膨胀系数压力和温度依赖性的影响。据我们所知,这两个特殊特征从未被理论模型描述过,它们既强调了所提出模型变化的有效性,也强调了本研究中获得的分子参数的物理意义。