Lymperiadis Alexandros, Adjiman Claire S, Galindo Amparo, Jackson George
Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
J Chem Phys. 2007 Dec 21;127(23):234903. doi: 10.1063/1.2813894.
A predictive group-contribution statistical associating fluid theory (SAFT-gamma) is developed by extending the molecular-based SAFT-VR equation of state [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] to treat heteronuclear molecules which are formed from fused segments of different types. Our models are thus a heteronuclear generalization of the standard models used within SAFT, comparable to the optimized potentials for the liquid state OPLS models commonly used in molecular simulation; an advantage of our SAFT-gamma over simulation is that an algebraic description for the thermodynamic properties of the model molecules can be developed. In our SAFT-gamma approach, each functional group in the molecule is modeled as a united-atom spherical (square-well) segment. The different groups are thus characterized by size (diameter), energy (well depth) and range parameters representing the dispersive interaction, and by shape factor parameters (which denote the extent to which each group contributes to the overall molecular properties). For associating groups a number of bonding sites are included on the segment: in this case the site types, the number of sites of each type, and the appropriate association energy and range parameters also have to be specified. A number of chemical families (n-alkanes, branched alkanes, n-alkylbenzenes, mono- and diunsaturated hydrocarbons, and n-alkan-1-ols) are treated in order to assess the quality of the SAFT-gamma description of the vapor-liquid equilibria and to estimate the parameters of various functional groups. The group parameters for the functional groups present in these compounds (CH(3), CH(2), CH(3)CH, ACH, ACCH(2), CH(2)=, CH=, and OH) together with the unlike energy parameters between groups of different types are obtained from an optimal description of the pure component phase equilibria. The approach is found to describe accurately the vapor-liquid equilibria with an overall %AAD of 3.60% for the vapor pressure and 0.86% for the saturated liquid density. The fluid phase equilibria of some larger compounds comprising these groups, which are not included in the optimization database and some binary mixtures are examined to confirm the predictive capability of the SAFT-gamma approach. A key advantage of our method is that the binary interaction parameters between groups can be estimated directly from an examination of pure components alone. This means that as a first approximation the fluid-phase equilibria of mixtures of compounds comprising the groups considered can be predicted without the need for any adjustment of the binary interaction parameters (which is common in other approaches). The special case of molecular models comprising tangentially bonded (all-atom and united-atom) segments is considered separately; we comment on the adequacy of such models in representing the properties of real molecules.
通过扩展基于分子的统计缔合流体理论(SAFT-VR)状态方程[A. Gil-Villegas等人,《化学物理杂志》106, 4168 (1997)],开发了一种预测性的基团贡献统计缔合流体理论(SAFT-γ),以处理由不同类型的融合片段形成的异核分子。因此,我们的模型是SAFT中使用的标准模型的异核推广,类似于分子模拟中常用的液态优化势(OPLS)模型;我们的SAFT-γ相对于模拟的一个优点是,可以开发模型分子热力学性质的代数描述。在我们的SAFT-γ方法中,分子中的每个官能团都被建模为一个联合原子球形(方阱)片段。因此,不同的基团由表示色散相互作用的尺寸(直径)、能量(阱深)和范围参数以及形状因子参数(表示每个基团对整体分子性质的贡献程度)来表征。对于缔合基团,片段上包含多个键合位点:在这种情况下,还必须指定位点类型、每种类型的位点数量以及适当的缔合能量和范围参数。处理了一些化学族(正构烷烃、支链烷烃、正烷基苯、单不饱和和二不饱和烃以及正烷-1-醇),以评估SAFT-γ对气液平衡描述的质量,并估计各种官能团的参数。这些化合物中存在的官能团(CH(3)、CH(2)、CH(3)CH、ACH、ACCH(2)、CH(2)=、CH=和OH)的基团参数以及不同类型基团之间的异质能量参数是从纯组分相平衡的最佳描述中获得的。发现该方法能够准确描述气液平衡,蒸气压的总平均绝对偏差(%AAD)为3.60%,饱和液体密度的总平均绝对偏差为0.86%。检查了一些包含这些基团的较大化合物(未包含在优化数据库中)的流体相平衡以及一些二元混合物,以确认SAFT-γ方法的预测能力。我们方法的一个关键优点是,基团之间的二元相互作用参数可以仅通过对纯组分的检查直接估计。这意味着,作为一阶近似,可以预测包含所考虑基团的化合物混合物的流体相平衡,而无需调整二元相互作用参数(这在其他方法中很常见)。分别考虑了包含切向键合(全原子和联合原子)片段的分子模型的特殊情况;我们评论了此类模型在表示真实分子性质方面的适用性。