Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
J Chem Phys. 2013 Oct 21;139(15):154504. doi: 10.1063/1.4819786.
A highly accurate equation of state (EOS) for chain molecules formed from spherical segments interacting through Mie potentials (i.e., a generalized Lennard-Jones form with variable repulsive and attractive exponents) is presented. The quality of the theoretical description of the vapour-liquid equilibria (coexistence densities and vapour pressures) and the second-derivative thermophysical properties (heat capacities, isobaric thermal expansivities, and speed of sound) are critically assessed by comparison with molecular simulation and with experimental data of representative real substances. Our new EOS represents a notable improvement with respect to previous versions of the statistical associating fluid theory for variable range interactions (SAFT-VR) of the generic Mie form. The approach makes rigorous use of the Barker and Henderson high-temperature perturbation expansion up to third order in the free energy of the monomer Mie system. The radial distribution function of the reference monomer fluid, which is a prerequisite for the representation of the properties of the fluid of Mie chains within a Wertheim first-order thermodynamic perturbation theory (TPT1), is calculated from a second-order expansion. The resulting SAFT-VR Mie EOS can now be applied to molecular fluids characterized by a broad range of interactions spanning from soft to very repulsive and short-ranged Mie potentials. A good representation of the corresponding molecular-simulation data is achieved for model monomer and chain fluids. When applied to the particular case of the ubiquitous Lennard-Jones potential, our rigorous description of the thermodynamic properties is of equivalent quality to that obtained with the empirical EOSs for LJ monomer (EOS of Johnson et al.) and LJ chain (soft-SAFT) fluids. A key feature of our reformulated SAFT-VR approach is the greatly enhanced accuracy in the near-critical region for chain molecules. This attribute, combined with the accurate modeling of second-derivative properties, allows for a much improved global representation of the thermodynamic properties and fluid-phase equilibria of pure fluids and their mixtures.
一种适用于由通过 Mie 势相互作用的球形片段形成的链状分子的高精度状态方程(EOS)被提出。通过与分子模拟和具有代表性的真实物质的实验数据进行比较,对蒸气-液体平衡(共存密度和蒸气压力)和二阶热力学性质(热容、等压热膨胀系数和声速)的理论描述的质量进行了严格评估。与 Mie 通用形式的统计关联流体理论(SAFT-VR)的先前版本相比,我们的新 EOS 代表了显著的改进。该方法严格使用 Barker 和 Henderson 高温微扰展开,在单体 Mie 系统的自由能中达到三阶。参考单体流体的径向分布函数是在 Wertheim 一阶热力学微扰理论(TPT1)中表示 Mie 链流体性质的前提,该函数是从二阶展开式计算得出的。由此产生的 SAFT-VR Mie EOS 现在可以应用于具有从软到非常排斥和短程 Mie 势的广泛相互作用的分子流体。对于模型单体和链状流体,实现了对相应分子模拟数据的良好表示。当应用于无处不在的 Lennard-Jones 势的特殊情况时,我们对热力学性质的严格描述与用于 LJ 单体(Johnson 等人的 EOS)和 LJ 链(软-SAFT)流体的经验 EOS 获得的描述具有同等质量。我们重新制定的 SAFT-VR 方法的一个关键特征是在链状分子的近临界区域具有大大提高的准确性。这一属性,加上二阶性质的精确建模,允许对纯流体及其混合物的热力学性质和流体相平衡进行更好的全局表示。